50 Гц

Серия e-SH

ГОРИЗОНТАЛЬНЫЕ ЦЕНТРОБЕЖНЫЕ НАСОСЫ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ AISI 316 С ВЫСОКОЭФЕКТИВНЫМИ ДВИГАТЕЛЯМИ IE3

ErP 2009/125/EC

Xylect™

Xylect[™] — это программа по подбору насосного оборудования, включающая в себя обширную базу данных. Программа содержит информацию обо всем ассортименте насосов и комплектующих, позволяет осуществлять поиск и предлагает ряд удобных функций по управлению проектами. Данные в системе регулярно обновляются.

Xylect™ доступна:

На веб-сайте www.xylect.com

Ha DVD - Loop 4U

На мобильных устройствах

Более подробную информацию см. на стр. 184-185.

Европейская Директива (ErP)

В последнее десятилетие Европейская комиссия по планированию энергетической эффективности оказала влияние на Европейский парламент и Совет Европы принять меры с целью снижения энергопотребления и дальнейшего отрицательного воздействия на окружающую среду.

Согласно **Директивам 2005/32/ЕС** по энергопотребляющему оборудованию (EuP) и 2009/125/ЕС по оборудованию, связанному с энергией (ErP), установлены требования к выпускаемой продукции.

Постановления комиссии (EC) № 640/2009 и (EU) № 4/2014 утвердили две директивы в отношении требований к **трехфазным электродвигателям 50 Гц**, производимым и подлежащим эксплуатации в пределах зоны EC в качестве самостоятельных агрегатов или в качестве элементов для другого оборудования.

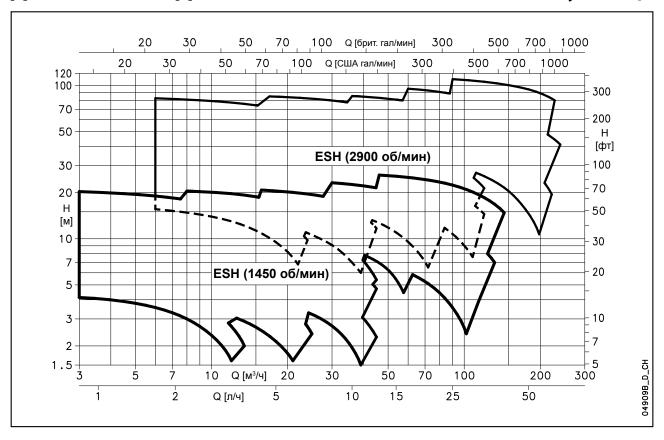
Эти нормативы предписывают, чтобы все двигатели производились с **индексом эффективности не ниже IE3** (или IE2 + преобразователь частоты) с **1 января 2015 года для двигателей номинальной мощностью 7,5–375 кВт и с 1 января 2017 года – мощностью 0,75–375 кВт.**

Постановление комиссии (EU) № 547/2012 утвердило две директивы в отношении требований к экодизайну некоторых типов **насосов для чистой воды**, производимых и подлежащих эксплуатации в пределах зоны ЕС в качестве самостоятельных агрегатов или в качестве элементов для другого оборудования.

Это постановление обязывает все насосы, предназначенные для перекачки воды, иметь **индекс MEI 0,4** с 1 января 2015 года.

Этот индекс определяется по специальной формуле, включающей значения гидравлического КПД как «точки оптимального КПД» (best efficiency point – BEP), 75% расхода в точке оптимального КПД (частичная нагрузка; Part load – PL) и 110% расхода в точке оптимального КПД (перегрузка; Over load – OL).

Насосы Lowara серии e-NSC, подпадающие под действие данных постановлений, отвечают требованиям ErP и имеют индекс MEI не ниже 0,4 и эффективность двигателей класса IE3.



СОДЕРЖАНИЕ

Введение	5
Применение	6
Расшифровка типового обозначения	Ω
Паспортная табличка	Q
Перечень 2-полюсных моделей, 50 Гц	40
Перечень 4-полюсных моделей, 50 Гц	44
Чертеж насоса и основные компоненты	12
Торцевые уплотнения	17
Электродвигатели (ErP 2009/125/EC)	4Ω
Насосы (ErP 2009/125/EC)	26
Минимальный индекс эффективности (МЕІ)	27
Диапазон гидравлических характеристик 2-полюсных моделей, 50 Гц	20
Таблица гидравлических характеристик 2-полюсных моделей, 50 Гц	20
Диапазон гидравлических характеристик 4-полюсных моделей, 50 Гц	31
Таблица гидравлических характеристик 4-полюсных моделей, 50 Гц	32
Рабочие характеристики 2-полюсных моделей, 50 Гц	25
Рабочие характеристики 2-полюсных моделей, 50 Гц	57
Габариты и вес	70
ESHH (ESH с модулем управления HYDROVAR)	96
Принадлежности	00
Техническое припожение	104

СЕРИЯ e-SH ДИАПАЗОН ГИДРАВЛИЧЕСКИХ ХАРАКТЕРИСТИК, 50 ГЦ

СЕРИЯ e-SH ВВЕДЕНИЕ

Lowara e-SH – это новая и усовершенствованная серия одноступенчатых центробежных насосов с осевым всасыванием, изготовленных из нержавеющей стали, с осевым всасывающим и радиальным напорным фланцевыми патрубками и горизонтальным валом.

Насосы **e-SH** изготовлены полностью из **нержавеющей стали AISI 316**, что делает их подходящим для перекачки воды или умеренно агрессивных жидкостей.

Насосы оборудованы торцовыми уплотнениями, двигателями класса эффективности IE3 и имеют удобную для эксплуатации и ремонта конструкцию (рабочее колесо, переходную муфту и двигатель можно извлечь, не отсоединяя корпус насоса от трубопровода).

Серия насосов е-SH доступны в следующих конструктивных исполнениях:

Моноблок

Установка рабочего колеса на удлиненном валу двигателя, двигатель соединяется непосредственно с корпусом насоса.

Жесткая муфта

Стандартный двигатель, рабочее колесо монтируется на удлиненным валу, который соединяется с валом двигателя при помощи муфты. Двигатель и корпус насоса соединены через проставок.

На раме

С гибким соединением и переходником, кронштейном, гибкой муфтой (по запросу — специальная версия с распорной муфтой), и рамой — основанием.

Насос со свободным концом вала

Версия без привода, предназначенная для соединения со стандартным электродвигателем.

Гидравлические характеристики

• Максимальная производительность:

до **240** м³/час для 2-полюсных моделей. до **130** м³/час для 4-полюсных моделей.

• Максимальный напор:

до **110** м для 2-полюсных моделей. до **23** м для 4-полюсных моделей.

- Гидравлические характеристики по стандарту ISO 9906:2012 Класс 3B.
- Диапазон рабочих температур: стандартная версия (уплотнения из FPM*)

-10 до +120 °C

Специальное исполнение (уплотнения из EPDM)

- -30 до **+120 °C**.
- Максимальное рабочее давление:
- **12 бар** @ 50 °C и 10 бар @ 120 °C
- * Фторкаучук: FPM (старый ISO), FKM (ASTM & новый ISO).

Характеристики двигателя

- Короткозамкнутый двигатель типа «беличье колесо» закрытой конструкции с внешней вентиляцией (TEFC).
- Модели с 2 и 4 полюсами.
- Класс защиты IP55 для двигателя (EN 60034-5), класс защиты IPX5 для электронасоса (EN 60529).
- Характеристики в соответствии с EN 60034-1.
- Индекс эффективности IE3 (трехфазный от 0,75 до 375 кВт).
- Класс изоляции: **155 (F)**.
- Стандартное напряжение:
 - 1 х 220-240 В 50 Гц для мощностей до 2,2 кВт
 - 3 х 220-240/380-415 В 50 Гц для мощностей до 3 кВт
 - 3×380 -415/660-690 В 50 Гц для мощностей более $3 \times B$ т
- Максимальная температура окружающей среды: 40 °C.

Примечание

- Вращение должно быть против часовой стрелки, если смотреть на всасывающий патрубок насоса.
- В комплект насоса не включены ответные фланцы.

Список директив

- Директива MD 2006/42/CE о машинном оборудовании
- Присоединительные размеры в соответствии с EN 733 (за исключением моделей ESH 25)
- Директива EMCD 2004/108/CE об электромагнитной совместимости
- Директива по экодизайну для изделий, связанных с использованием энергии ErP 2009/125/CE, Регламент (CE) № 640/2009, Регламент (UE) № 4/2014, Регламент (UE) № 547/2012

и основные технические нормативы:

EN 809, EN 60204-1 (безопасность) EN 1092-2 (фланцы)

EN 61000-6-1, EN 61000-6-3

EN 60034-30:2009, IEC 60034-30:2014 (электродвигатели)

СЕРИЯ e-SH ВНУТРЕННИЕ ИНЖЕНЕРНЫЕ СИСТЕМЫ ЗДАНИЙ ПРИМЕНЕНИЯ И ПРЕИМУЩЕСТВА

Применение

Насосы **Lowara e-SH** подходят для многих применений, требующих надежности и эффективности при низком энергопотреблении.

Hacocы Lowara серии e-SH могут использоваться в инженерных системах для следующих целей:

HVAC

- Перекачка жидкости в системах отопления.
- Перекачка жидкости в системах кондиционирования воздуха.
- Перекачка жидкости в вентиляционных системах.
- Перекачивание слабоагрессивных сред.

• Водоснабжение

- Водоснабжение в коммерческих зданиях.
- Оросительные системы.
- Подача воды в теплицах.

Преимущества

Hacocы Lowara e-SH позволяют добиться следующих преимуществ.

- **Характеристики**: насосы e-SH отвечают требованиям ErP 2015, оборудованы двигателями класса IE3. Матераил корпуса насоса нержавеющая сталь AISI 316, делает эти насосы идеальными для перекачивания слабоагрессивных жидкостей или для работы с агрессивными средами. Стандартная версия из чугуна с максимальным рабочим давлением PN12, рассчитанная на максимальную температуру жидкости 120° C, и уплотнительными кольцами из FPM.
- **Надежность**: надежная конструкция и высокие стандарты качества продукции, различные варианты торцовых уплотнений и кольца износа гарантируют непрерывную работу и снижение времени простоев при техническом обслуживании.
- **Срок окупаемости**: лучший гидравлический и электрический КПД, версии, оборудованные преобразователем частоты HYDROVAR, легкость и быстрота обслуживания позволяют снизить эксплуатационные затраты и расходы на обслуживание и сэкономить электроэнергию.
- Сервисная поддержка: мы постоянно работаем в тесном контакте с нашими потребителями, чтобы помочь им в выборе нужного насоса для конкретного применения. На нашем сайте, на DVD и в библиотеках приложений для мобильных устройств есть программное обеспечение для простого и легкого выбора нужного насосного оборудования.

Характеристики

- ➤ Модели от DN25 до DN80.
- ➤ Широкий диапазон эксплуатационных характеристик с напором до 110 м и производительностью до 240 м³/час.
- Номинальное давление: 12 бар.
- ➤ Широкий диапазон температур для перекачиваемых жидкостей: от -30 °C до +120 °C.
- Широкий ряд материалов для различных типов перекачиваемых жидкостей.
- ▶ Двигатели IE3 с высоким классом эффективности.
- ▶ Регулировка скорости вращения при помощи модуля управления HYDROVAR.

СЕРИЯ e-SH ПРОМЫШЛЕННЫЕ ПРИМЕНЕНИЯ

Применение

Серия **Lowara e-SH** разрабатывались таким образом, чтобы охватить широкий ряд применений в промышленном сегменте. Насосы серии e-SH можно устанавливать туда, где важными факторомами явля-

ются компактность и высокая производительность. Также их возможно использовать в технологических процессах, где потребителю нужна долговечность и надежность оборудования при работе с различными типами жидкостей.

Hacocы Lowara серии e-SH могут использоваться в промышленности для следующих целей:

• Технологические процессы

- Процессы охлаждения и нагрева
- Рекуперация тепла.

• Водоснабжение

- Повышение давления
- Ирригационные системы
- Перекачивание слабоагрессивных жидкостей.

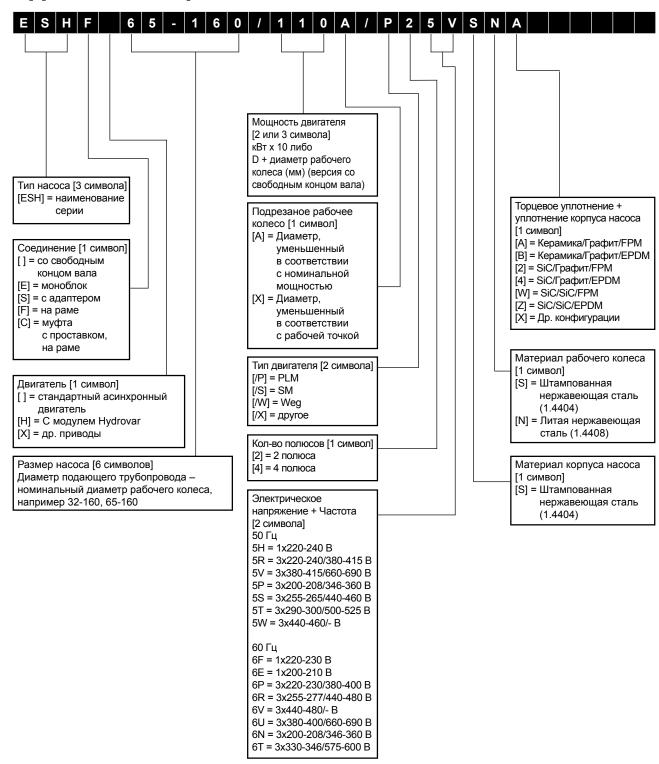
• Обработка воды

- Мойка и очистка
- Обработка воды.

Преимущества

Hacocы Lowara серии e-SH позволяют добиться следующих преимуществ:

- **Эффективность**: новые высокоэффективные разработки в области гидравлики, двигатели IE3 и регулирование скорости с помощью модулей и регулирование скорости с помощью модулей и поставляющия LIVDROVAR поставляющий в поставляющий в
 - управления HYDROVAR позволяют добиться низких эксплуатационных затрат.
- **Надежность**: различные материалы торцовых уплотнений и доступные опции позволяют подобрать насос, отвечающий нуждам вашего конкретного применения. При этом конструкция насосов e-SH позволяет проводить техобслуживание в самые короткие сроки, что значительно снижает время простоев во время плановых ремонтов.
- **Подбор оборудования**: необходимую конфигурацию для решения вашей задачи можно получить при помощи программы подбора или обратившись за помощью к нашим экспертам в промышленном секторе.
- **Глобальная платформа**: насосы серии e-SH собираются на разных заводах по всему миру, что снижает срок изготовления и поставки комплектующих.

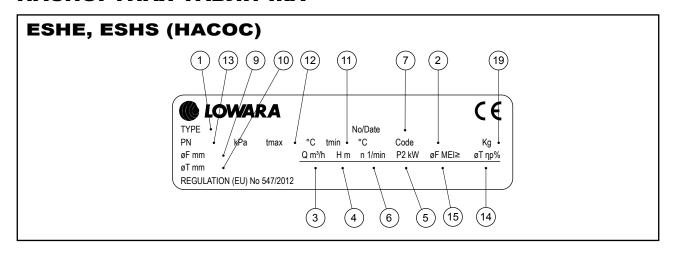

Features

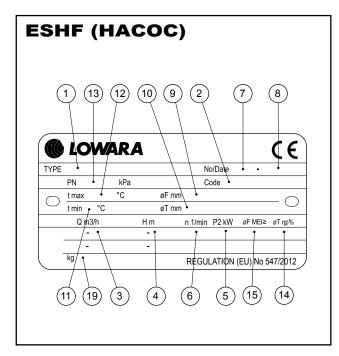
- ➤ Модели от DN25 до DN80.
- ➤ Широкий диапазон эксплуатационных характеристик с напором до 110 м и производительностью до 240 м³/час.
- Номинальное давление: 12 бар.
- ➤ Широкий диапазон температур для перекачиваемых жидкостей: от -30 °C до +120 °C.
- > Широкий ряд материалов для различных типов перекачиваемых жидкостей.
- ▶ Двигатели IE3 с высоким классом эффективности.
- ▶ Регулировка скорости вращения при помощи модуля управления HYDROVAR.

СЕРИЯ ESH ИДЕНТИФИКАЦИОННОЕ ОБОЗНАЧЕНИЕ

ПРИМЕРЫ

ESHS 80-200/300/W25VSNA


Насос с адаптером, напорный патрубок DN 80, номинальный диаметр рабочего колеса 200 мм, номинальная мощность двигателя 30 кВт, модель WEG IE3, 2-полюсной, 50 Гц 380-415/660-690 В, корпус насоса изготовлен из штампованной нержавеющей стали, рабочее колесо из литой нержавеющей стали, механическое уплотнение керамик/графит/FPM.


ESHF 80-160/22A/P45RSNA

Насос на раме, напорный патрубок DN 80, номинальный диаметр рабочего колеса 160 мм, номинальная мощность двигателя 2,2 кВт, модель PLM IE3, 4-полюсной, 50 Гц 220-240/380-415 В, корпус насоса изготовлен из штампованной нержавеющей стали, рабочее колесо из литой нержавеющей стали, механическое уплотнение керамика/графит/FPM.

CEPUЯ ESH ПАСПОРТНАЯ ТАБЛИЧКА

ОПИСАНИЕ

- 1 Тип насоса
- 2 Код
- 3 Диапазон производительности
- 4 Диапазон напора
- 5 Номинальная или макс. мощность насоса
- 6 Скорость вращения
- 7 Серийный номер или номер заказа
- 8 Номер строки в заказе
- 9 Номинальный диаметр рабочего колеса (указан только для подрезанных рабочих колес)
- 10 Диаметр подрезанного рабочего колеса
- Минимальная температура перекачиваемой жидкости
- 12 Максимальная температура перекачиваемой жидкости
- 13 Максимальное рабочее давление
- 14 Гидравлический КПД в точке максимальной эффективности
- 15 Минимальный индекс эффективности MEI
- 19 Bec

СЕРИЯ ESH ПЕРЕЧЕНЬ 2-ПОЛЮСНЫХ МОДЕЛЕЙ, 50 ГЦ

PA3MEP	кВт		Е	ВЕРСИЯ		
ESH2		ESHEM	ESHE	ESHS	ESHF	ESHC
25-125/07	0,75	•	•	•	•	_
25-125/11	1,1	•	•	•	•	-
25-160/15	1,5	•	•	•	•	_
25-160/22	2,2	•	•	•	•	-
25-200/30	3	-	•	•	•	-
25-200/40	4	1	•	•	•	-
25-250/55	5,5	-	•	•	•	-
25-250/75	7,5		•	•	•	-
25-250/110	11	-	•	•	•	-
32-125/07	0,75	•	•	•	•	•
32-125/11	1,1	•	•	•	•	•
32-160/15	1,5	•	•	•	•	•
32-160/22	2,2	•	•	•	•	•
32-200/30	3	-	•	•	•	•
32-200/40	4	-	•	•	•	•
32-250/55	5,5	ı	•	•	•	•
32-250/75	7,5	-	•	•	•	•
32-250/110	11	-	•	•	•	•
40-125/11	1,1	•	•	•	•	•
40-125/15	1,5	•	•	•	•	•
40-125/22	2,2	•	•	•	•	•
40-160/30	3	-	•	•	•	•
40-160/40	4	-	•	•	•	•
40-200/55	5,5	-	•	•	•	•
40-200/75	7,5	-	•	•	•	•
40-250/92	9,2	-	•	-	-	-
40-250/110A	11	-	-	•	•	•
40-250/110	11	-	•	•	•	•
40-250/150	15	-	•	•	•	•
50-125/22	2,2	•	•	•	•	•
50-125/30	3	-	•	•	•	•
50-125/40	4	-	•	•	•	•
50-160/55	5,5	-	•	•	•	•
50-160/75	7,5	-	•	•	•	•
50-200/92	9,2	-	•	-	-	-
50-200/110A	11	-	-	•	•	•
50-200/110	11	-	•	•	•	•
50-250/150	15	-	•	•	•	•
50-250/185	18,5	-	•	•	•	•
50-250/220	22	-	•	•	•	•

PA3MEP	кВт			РСИЯ		
PASIVIEP	квт			I	i	i
ESH2		ESHEM	ESHE	ESHS	ESHF	ESHC
65-160/40	4	-	•	•	•	•
65-160/55	5,5	-	•	•	•	•
65-160/75	7,5	-	•	•	•	•
65-160/92	9,2	-	•	-	-	-
65-160/110A	11	-	-	•	•	•
65-160/110	11	-	•	•	•	•
65-200/150	15	-	•	•	•	•
65-200/185	18,5	-	•	•	•	•
65-200/220	22	-	•	•	•	•
65-250/300	30	-	-	•	•	•
65-250/370	37	-	ı	•	•	•
80-160/110	11	-	•	•	•	•
80-160/150	15	-	•	•	•	•
80-160/185	18,5	-	•	•	•	•
80-200/220	22	-	•	•	•	•
80-200/300	30	-	-	•	•	•
80-200/370	37	-	-	•	•	•
80-250/450	45	-	_	-	•	•
80-250/550	55	-	-	-	•	•
80-250/750	75	-	-	-	•	•

ESH_models-2p50-en_a_sc

ОПИСАНИЕ

ESHE..М: Моноблочная версия с однофазным двигателем.

ESHE: Моноблочная версия.

ESHS: Моноблочная версия с адаптером и стандартным двигателем.

ESHF: Версия на раме.

ESHC: Версия с муфтой с проставком на раме.

⁼ Доступен

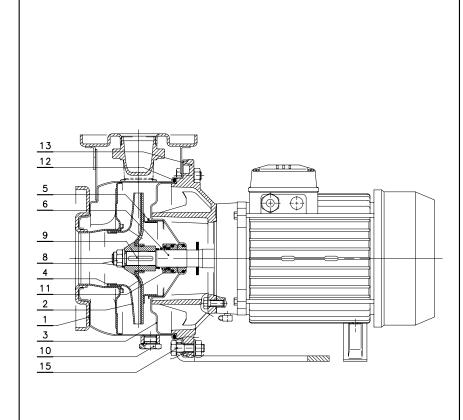
ВЕРСИЯ

a **xylem** brand

СЕРИЯ ESH ПЕРЕЧЕНЬ 4-ПОЛЮСНЫХ МОДЕЛЕЙ, 50 ГЦ

PA3MEP	кВт	ВЕРСИЯ			
ESH4		ESHE	ESHS	ESHF	ESHC
25-125/02A	0,25	•	-	•	-
25-125/02	0,25	•	-	•	-
25-160/02A	0,25	•	-	•	-
25-160/02	0,25	•	-	•	-
25-200/03	0,37	•	-	•	-
25-200/05	0,55	•	-	•	-
25-250/07	0,75	•	•	•	-
25-250/11	1,1	•	•	•	-
25-250/15	1,5	•	•	•	-
32-125/02A	0,25	•	-	•	_
32-125/02	0,25	•	_	•	_
32-160/02A	0,25	•	-	•	_
32-160/02	0,25	•	_	•	-
32-200/03	0,37	•	-	•	-
32-200/05	0,55	•	-	•	-
32-250/07	0,75	•	•	•	-
32-250/11	1,1	•	•	•	-
32-250/15	1,5	•	•	•	-
40-125/02A	0,25	•	-	•	-
40-125/02	0,25	•	-	•	-
40-160/03	0,37	•	-	•	-
40-160/05	0,55	•	-	•	-
40-200/07	0,75	•	•	•	-
40-200/11	1,1	•	•	•	-
40-250/11	1,1	•	•	•	-
40-250/15	1,5	•	•	•	-
40-250/22	2,2	•	•	•	-
50-125/02	0,25	•	-	•	-
50-125/03	0,37	•	-	•	-
50-125/05	0,55	•	_	•	-
50-160/07	0,75	•	•	•	-
50-160/11	1,1	•	•	•	-
50-200/11	1,1	•	•	•	-
50-200/15	1,5	•	•	•	-
50-250/22A	2,2	•	•	•	-
50-250/22	2,2	•	•	•	-
50-250/30	3	•	•	•	-

ESH4		ESHE	ESHS	ESHF	ESHC
65-200/15	1,5	•	•	•	-
65-200/22	2,2	•	•	•	-
65-200/30	3	•	•	•	-
65-250/40	4	•	•	•	-
65-250/55	5,5	•	•	•	-
80-160/15	1,5	•	•	•	-
80-160/22A	2,2	•	•	•	-
80-160/22	2,2	•	•	•	-
80-200/30	3	•	•	•	-
80-200/40	4	•	•	•	-
80-250/55	5,5	•	•	•	-
80-250/75	7,5	•	•	•	-
80-250/110	11	•	•	•	-


PA3MEP

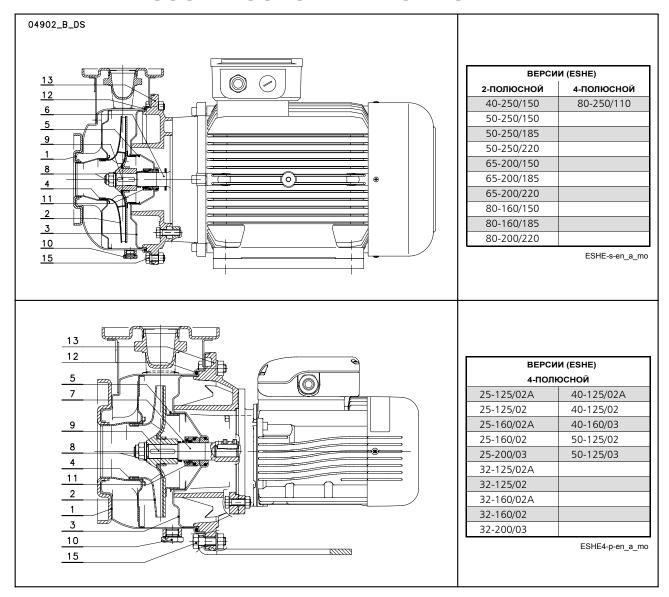
ESH_models-4p50-en_a_sc

⁼ Доступен

СЕРИЯ ЕSHE ЧЕРТЕЖ НАСОСА И ОСНОВНЫЕ КОМПОНЕНТЫ

04906_B_DS

ВЕРСИ	И (ESHE)
2-ПОЛЮСНОЙ	4-ПОЛЮСНОЙ
25-125/07	25-200/05
25-125/11	25-250/07
25-160/15	25-250/11
25-160/22	25-250/15
25-200/30	32-200/05
25-200/40	32-250/07
25-250/55	32-250/11
25-250/75	32-250/15
25-250/110	40-160/05
32-125/07	40-200/07
32-125/11	40-200/11
32-160/15	40-250/11
32-160/22	40-250/15
32-200/30	40-250/22
32-200/40	50-125/05
32-250/55	50-160/07
32-250/75	50-160/11
32-250/110	50-200/11
40-125/11	50-200/15
40-125/15	50-250/22A
40-125/22	50-250/22
40-160/30	50-250/30
40-160/40	65-200/15
40-200/55	65-200/22
40-200/75	65-200/30
40-250/92	65-250/40
40-250/110	65-250/55
50-125/22	80-160/15
50-125/30	80-160/22A
50-125/40	80-160/22
50-160/55	80-200/30
50-160/75	80-200/40
50-200/92	80-250/55
50-200/110	80-250/75
65-160/40	
65-160/55	
65-160/75	
65-160/92	
65-160/110	
80-160/110	

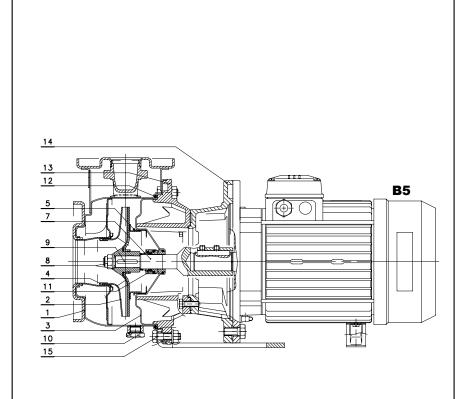

ссыл.	ЧАСТЬ	МАТЕРИАЛ	ССЫЛКИ НА СТАНДАРТЫ	
N.			ЕВРОПА	США
1	Корпус насоса	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
	Рабочее колесо 25-32-40-50-65 (160)**	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Рабочее колесо 65(160)***, 65(200-250)-80	Нержавеющая сталь	EN 10213-4-GX5CrNiMo19-11-2 (1.4408)	ASTM CF8M (литая нерж. сталь AISI 316)
3	Диск уплотнения	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	
4	Проставочное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Контрупорное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
6	Свободный конец вала	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
7	Жесткая муфта вала	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
8	Гайка и шайба фиксации рабочего колеса	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
9	Шпонка	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
10	Заливные и сливные пробки	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
11	Торцевое уплотнение	Керамика/Графит/FPM	(стандартная версия)	
12	Эластомеры	FPM (стандартная вер	сия)	
13	Адаптер*	Алюминий	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
13	Адаптер	Чугун	EN 1561-GJL-200 (JL1030)	ASTM Класс 25
15	Крепеж корпуса насоса	Оцинкованная сталь	·	

^{* 2/4} полюса: 25/32/40-125, 25/32/40-160, 25/32/40-200

^{** 2} полюса: 65-160/40, 65-160/55, 65-160/75 *** 2 полюса: 65-160/92, 65-160/110A, 65-160/110

СЕРИЯ ESHE ЧЕРТЕЖ НАСОСА И ОСНОВНЫЕ КОМПОНЕНТЫ

ссыл.	ЧАСТЬ	МАТЕРИАЛ	ССЫЛКИ НА СТАНДАРТЫ	
N.			ЕВРОПА	США
1	Корпус насоса	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
	Рабочее колесо 25-32-40-50-65 (160)**	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Рабочее колесо 65(160)***, 65(200-250)-80	Нержавеющая сталь	EN 10213-4-GX5CrNiMo19-11-2 (1.4408)	ASTM CF8M (литая нерж. сталь AISI 316)
3	Диск уплотнения	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	
4	Проставочное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Контрупорное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
6	Свободный конец вала	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
7	Жесткая муфта вала	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
8	Гайка и шайба фиксации рабочего колеса	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
9	Шпонка	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
10	Заливные и сливные пробки	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
11	Торцевое уплотнение	Керамика/Графит/FPM	(стандартная версия)	
12	Эластомеры	FPM (стандартная вер	сия)	
13	Адаптер*	Алюминий	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
13	Адаптер	Чугун	EN 1561-GJL-200 (JL1030)	ASTM Класс 25
15	Крепеж корпуса насоса	Оцинкованная сталь		


^{* 2/4} полюса: 25/32/40-125, 25/32/40-160, 25/32/40-200

^{** 2} полюса: 65-160/40, 65-160/55, 65-160/75

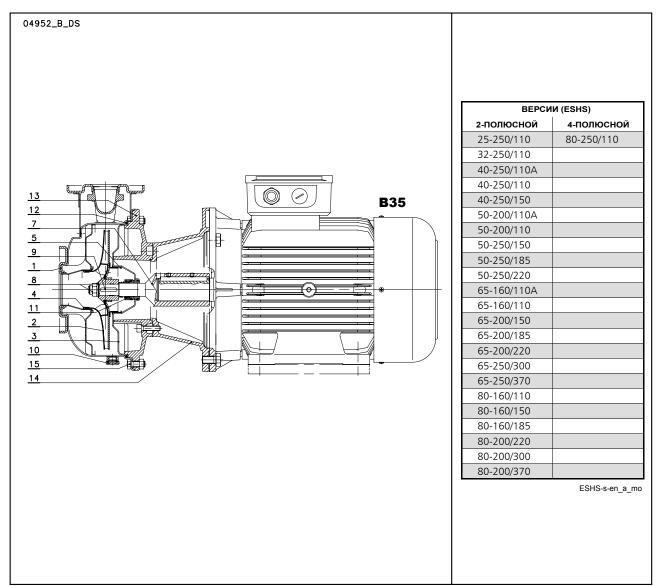
^{*** 2} полюса: 65-160/92, 65-160/110A, 65-160/110

СЕРИЯ ESHS ЧЕРТЕЖ НАСОСА И ОСНОВНЫЕ КОМПОНЕНТЫ

04956_C_DS

BEPC	IИ (ESHS)
2-ПОЛЮСНОЙ	4-ПОЛЮСНОЙ
25-125/07	25-250/07
25-125/11	25-250/11
25-160/15	25-250/15
25-160/22	32-250/07
25-200/30	32-250/11
25-200/40	32-250/15
25-250/55	40-200/07
25-250/75	40-200/11
32-125/07	40-250/11
32-125/11	40-250/15
32-160/15	40-250/22
32-160/22	50-160/07
32-200/30	50-160/11
32-200/40	50-200/11
32-250/55	50-200/15
32-250/75	50-250/22A
40-125/11	50-250/22
40-125/15	50-250/30
40-125/22	65-200/15
40-160/30	65-200/22
40-160/40	65-200/30
40-200/55	65-250/40
40-200/75	65-250/55
50-125/22	80-160/15
50-125/30	80-160/22A
50-125/40	80-160/22
50-160/55	80-200/30
50-160/75	80-200/40
65-160/40	80-250/55
65-160/55	80-250/75
65-160/75	

ссыл.	ЧАСТЬ	МАТЕРИАЛ	ССЫЛКИ НА СТАНДАРТЫ	
N.			ЕВРОПА	США
1	Корпус насоса	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
	Рабочее колесо 25-32-40-50-65 (160)**	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Рабочее колесо 65(160)***, 65(200-250)-80	Нержавеющая сталь	EN 10213-4-GX5CrNiMo19-11-2 (1.4408)	ASTM CF8M (литая нерж. сталь AISI 316)
3	Диск уплотнения	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Проставочное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Контрупорное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
7	Жесткая муфта вала	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
8	Гайка и шайба фиксации рабочего колеса	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
9	Шпонка	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
10	Заливные и сливные пробки	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
11	Торцевое уплотнение	Керамика/Графит/FPM	(стандартная версия)	
12	Эластомеры	FPM (стандартная вер	сия)	
40	Адаптер*	Алюминий	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
13	Адаптер	Чугун	EN 1561-GJL-200 (JL1030)	ASTM Класс 25
14	Адаптер двигателя	Чугун	EN 1561-GJL-200 (JL1030)	ASTM Класс 25
15	Крепеж корпуса насоса	Оцинкованная сталь	·	


^{* 2/4} полюса: 25/32/40-125, 25/32/40-160, 25/32/40-200 ** 2 полюса: 65-160/40, 65-160/55, 65-160/75

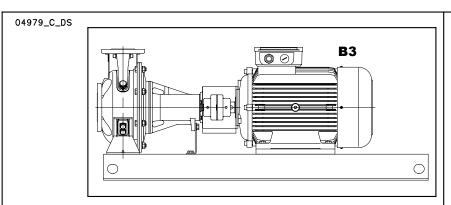
ESHE-en_a_tm

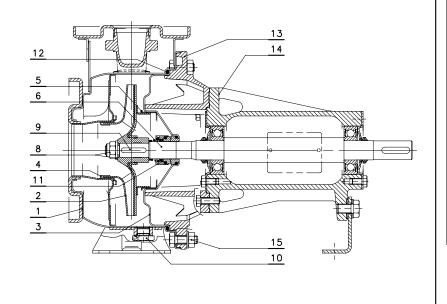
^{*** 2} полюса: 65-160/92, 65-160/110A, 65-160/110

CEPUЯ ESHS ЧЕРТЕЖ НАСОСА И ОСНОВНЫЕ КОМПОНЕНТЫ

ссыл.	ЧАСТЬ	МАТЕРИАЛ	ССЫЛКИ НА СТАНДАРТЫ	
N.			ЕВРОПА	США
1	Корпус насоса	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
	Рабочее колесо 25-32-40-50-65 (160)**	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Рабочее колесо 65(160)***, 65(200-250)-80	Нержавеющая сталь	EN 10213-4-GX5CrNiMo19-11-2 (1.4408)	ASTM CF8M (литая нерж. сталь AISI 316)
3	Диск уплотнения	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Проставочное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Контрупорное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
7	Жесткая муфта вала	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
8	Гайка и шайба фиксации рабочего колеса	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
9	Шпонка	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
10	Заливные и сливные пробки	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
11	Торцевое уплотнение	Керамика/Графит/FPM	(стандартная версия)	
12	Эластомеры	FPM (стандартная вер	сия)	
1,0	Адаптер*	Алюминий	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
13	Адаптер	Чугун	EN 1561-GJL-200 (JL1030)	ASTM Класс 25
14	Адаптер двигателя	Чугун	EN 1561-GJL-200 (JL1030)	ASTM Класс 25
15	Крепеж корпуса насоса	Оцинкованная сталь		`

^{* 2/4} полюса: 25/32/40-125, 25/32/40-160, 25/32/40-200


ESHE-en_a_tm


^{** 2} полюса: 65-160/40, 65-160/55, 65-160/75

^{*** 2} полюса: 65-160/92, 65-160/110A, 65-160/110

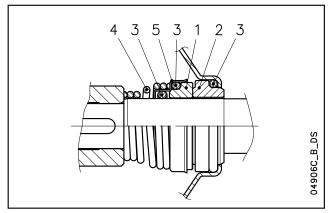
СЕРИИ ESH, ESHF, ESHC ЧЕРТЕЖ HACOCA И ОСНОВНЫЕ КОМПОНЕНТЫ

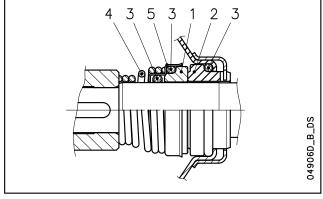
ВЕРСИИ
ESH, ESHF, ESHC
25-125
25-160
25-200
25-250
32-125
32-160
32-200
32-250
40-125
40-160
40-200
40-250
50-125
50-160
50-200
50-250
65-160
65-200
65-250
80-160
80-200
80-250

ESHF-p-en_a_mo

ссыл.	ЧАСТЬ	МАТЕРИАЛ	ССЫЛКИ НА СТАНДАРТЫ	
N.			ЕВРОПА	США
1	Корпус насоса	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
	Рабочее колесо 25-32-40-50-65 (160)**	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
2	Рабочее колесо 65(160)***, 65(200-250)-80	Нержавеющая сталь	EN 10213-4-GX5CrNiMo19-11-2 (1.4408)	ASTM CF8M (литая нерж. сталь AISI 316)
3	Диск уплотнения	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
4	Проставочное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
5	Контрупорное кольцо	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
6	Жесткая муфта вала	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
8	Гайка и шайба фиксации рабочего колеса	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
9	Шпонка	Нержавеющая сталь	EN 10088-1-X2CrNiMo17-12-2 (1.4404)	AISI 316L
10	Заливные и сливные пробки	Нержавеющая сталь	EN 10088-1-X5CrNiMo17-12-2 (1.4401)	AISI 316
11	Торцевое уплотнение	Керамика/Графит/FPM	(стандартная версия)	
12	Эластомеры	FPM (стандартная вер	сия)	
40	Адаптер*	Алюминий	EN 1706-AC-AlSi11Cu2 (Fe) (AC46100)	-
13	Адаптер	Чугун	EN 1561-GJL-200 (JL1030)	ASTM Класс 25
14	Адаптер двигателя	Чугун	EN 1561-GJL-200 (JL1030)	ASTM Класс 25
15	Крепеж корпуса насоса	Оцинкованная сталь		

^{* 2/4} полюса: 25/32/40-125, 25/32/40-160, 25/32/40-200


ESHE-en_a_tm


^{** 2} полюса: 65-160/40, 65-160/55, 65-160/75 *** 2 полюса: 65-160/92, 65-160/110A, 65-160/110

СЕРИЯ ESH ТОРЦЕВОЕ УПЛОТНЕНИЕ

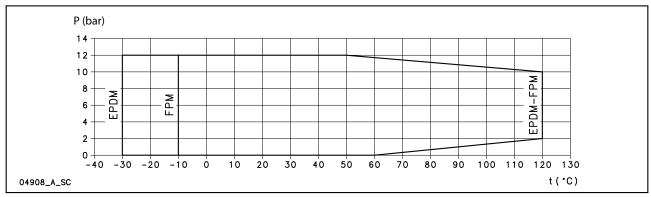
Торцевое уплотнение с посадочными размерами согласно стандартам EN 12756 и ISO 3069.

(*) Стандартная версия

(**) Версия со стопорным кольцом блокировки вращения фиксированной части

ПЕРЕЧЕНЬ МАТЕРИАЛОВ

ПОЗИЦИЯ 1-2	позиция з	позиция 4-5
В : Графит, пропитанный синтетической смолой	E : EPDM	G : AISI 316
Q ₁ : Карбид кремния	V : FPM	
V : Керамика		


sh ten-mec-en a tm

ТИП УПЛОТНЕНИЯ

		ПОЛ	ОЖЕНИЕ			ТЕМПЕРАТУРА							
ТИП	1	2	3	4	5	(℃)							
	ВРАЩАЮЩАЯСЯ ЧАСТЬ	НЕПОДВИЖНАЯ ЧАСТЬ	ЭЛАСТОМЕРЫ	ПРУЖИНЫ	ДРУГИЕ ДЕТАЛИ	(
		СТАНДАРТНО	Е ТОРЦЕВОЕ	УПЛОТНЕН	INE								
VB V G G	V	В	V	G	G	-10 +120							
	ДРУГИЕ ТИПЫ ТОРЦЕВЫХ УПЛОТНЕНИЙ												
Q₁ B V G G	Q ₁	В	V	G	G	-10 +120							
$Q_1 Q_1 V G G$	Q ₁	Q ₁	V	G	G	-10 +120							
VB E G G	V	В	E	G	G	-30 +120							
Q ₁ B E G G	Q ₁	В	E	G	G	-30 +120							
$Q_1 Q_1 E G G$	Q_1	Q_1	Е	G	G	-30 +120							

sh_tipi-ten-mec-en_a_tc

ДИАГРАММА ЗАВИСИМОСТИ ГРАНИЦ ДАВЛЕНИЯ ОТ ТЕМПЕРАТУРЫ ПЕРЕКАЧИВАЕМОЙ ЖИКОСТИ (С ТОРЦЕВЫМИ УПЛОТНЕНИЯМИ, УКАЗАННЫМИ ВЫШЕ)

ErP 2009/125/EC

СЕРИЯ ESH **ДВИГАТЕЛИ**

В последнее десятилетие Европейская комиссия по планированию энергетической эффективности оказала влияние на Европейский парламент и Совет Европы принять меры с целью снижения энергопотребления и дальнейшего отрицательного воздействия на окружающую среду. Согласно Директивам 2005/32/ЕС по энергопотребляющему оборудованию (EuP) и 2009/125/ЕС по оборудованию, связанному с энергией (ЕгР), установлены требования к выпускаемой продукции.

Постановления комиссии (EC) № 640/2009 и (EU) № 4/2014 утвердили две директивы в отношении требований к трехфазным электродвигателям 50 Гц, производимым и подлежащим эксплуатации в пределах зоны ЕС в качестве самостоятельных агрегатов или в качестве приводов для другого оборудования.

В число рассматриваемых типов входят трехфазные двигатели 50 Гц с мощностью от 0,75 до 375 кВт.

Постановление также устанавливает следующие сроки.

ОТ	кВт	минимальный уровень эффективности (IE)
16 июня 2011 г.	0,75 ÷ 375	IE2
27 июля 2014 г.	0,75 ÷ 375	новые критерии исключения
	< 7,5	IE2
1 января 2015 г.	7.5 . 07.5	IE3
	7,5 ÷ 375	IE2, оборудованные регулируемым приводом
1 gupong 2017 s	0.75 : 275	IE3
1 января 2017 г.	0,75 ÷ 375	IE2, оборудованные регулируемым приводом

- Двигатель с короткозамкнутой обмоткой закрытой Однофазная версия: конструкции с наружной вентиляцией (TEFC).
- Номинальная мощность от 1,1 до 200 кВт для 2-полюсных и от 0,25 до 355 кВт для 4-полюсных.
- Класс защиты IP55.
- Класс изоляции 155 (F).
- Стандартные трехфазные поверхностные двигатели ≥ 0,75 кВт поставляются как **IE3**.
- Уровень эффективности ІЕ согласно EN 60034-30:2009 и IEC 60034-30-1:2014 (≥ 0,75 кBт).
- Электрические характеристики согласно EN 60034-1.
- Метрический кабельный ввод согласно EN 50262. Максимальная наружная температура: 40 С.

220-240 В 50 Гц

Встроенная автоматическая защита от перегрузки до 1,5 кВт. Для более высокой мощности защиту должен обеспечить пользователь.

- Трехфазная версия: 220-240/380-415 В 50 Гц для мощности до 3 кВт. 380-415/660-690 В 50 Гц для мощности свыше 3 кВт. Защиту от перегрузки должен обеспечить пользователь.
- Пассивный термоконтроль включен в стандартную комплектацию только для двигателей WEG (по одному на фазу, 155° C).

СЕРИЯ ESHE ОДНОФАЗНЫЕ 2-ПОЛЮСНЫЕ ЭЛЕКТРОДВИГАТЕЛИ, 50 ГЦ

	тип	A3MEP IEC*	ктивное нение	ПОТРЕБЛЯЕМЫЙ ТОК	конде	НСАТОР		ДАНН	ЫЕ ДЛЯ І	ІАПРЯЖЕ	НИЯ 230 І	В, 50 Гц	
P_{N}	двигателя	5 5 5	стру	In (A)							Tn		
кВт		Ξ	Κοτ		μF	V	мин ⁻¹	ls / In	η%	cosφ	Нм	Ts/Tn	Tm/Tn
0,75	SM90RB14S2/1075	90R	B14	4,83-5,23	30	450	2875	5,28	71,8	0,92	2,49	0,70	2,59
1,1	SM90RB14S2/1115	90R	B14	6,88-6,65	30	450	2800	3,89	74,7	0,96	3,75	0,46	1,72
1,5	SM90RB14S2/1155	90R	B14	9,21-8,58	40	450	2810	4,00	76,1	0,98	5,15	0,39	1,74
2,2	PLM90B14S2/1225	90	B14	12,5-11,6	70	450	2825	4,47	82,4	0,97	7,43	0,53	1,87

^{*} R = Уменьшенный размер корпуса двигателя относительно свободного конца вала и соответствующего фланца

ESHE-motm-2p50-en_a_te

СЕРИЯ ESHE ТРЕХФАЗНЫЕ 2-ПОЛЮСНЫЕ ЭЛЕКТРОДВИГАТЕЛИ, 50 ГЦ

								Эс	рфекти	вность	ηΝ									_
										%										Год выпуска
	Δ	220 B			∆ 230 B		Z	240 B		I	∆ 380 B			∆ 400 B			∆ 415 B			361
P_N	Y	7 380 B		١	Y 400 B		,	/ 415 B		•	Y 660 B		,	Y 690 B					IE	9
кВт	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		_
0,75	82,5	83,1	81,3	82,8	82,7	80,1	82,6	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9		
1,1	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4		
1,5	85,6	86,5	85,8	85,9	86,4	84,9	86,0	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0		
2,2	86,5	87,4	86,8	86,4	86,9	85,7	86,6	86,7	85,0	86,4	86,7	85,0	86,4	86,7	85,0	86,4	86,7	85,0		4
3	87,2	88,5	88,3	87,5	88,2	87,5	87,5	87,8	86,4	87,2	87,8	86,4	87,2	87,8	86,4	87,2	87,8	86,4		11/2014
4	89,1	90,1	89,2	89,1	90,1	89,2	89,1	90,1	89,2	89,1	90,3	90,4	89,6	90,4	89,9	89,6	90,1	89,2	_	11/2
5,5	89,5	89,6	88,0	89,5	89,6	88,0	89,5	89,6	88,0	89,5	90,3	89,9	89,7	90,0	89,0	89,6	89,6	88,0	3	O
7,5	90,6	90,5	89,0	90,6	90,5	89,0	90,6	90,5	89,0	90,6	91,0	90,2	90,8	90,8	89,6	90,7	90,5	89,0		
9,2	90,8	91,0	89,7	90,8	91,0	89,7	90,8	91,0	89,7	90,8	91,4	90,8	91,1	91,3	90,3	91,1	91,0	89,7		
11	91,3	92,0	91,1	91,3	92,0	91,1	91,3	92,0	91,1	91,3	92,2	92,2	91,6	92,2	91,7	91,7	92,0	91,1		
15	92,5	92,4	91,2	92,5	92,4	91,2	92,5	92,4	91,2	92,7	93,3	92,9	93,1	93,3	92,7	92,5	92,4	91,2		
18,5	92,6	93,1	92,4	92,6	93,1	92,4	92,6	93,1	92,4	92,6	93,2	93,0	92,9	93,3	92,8	92,9	93,1	92,4		
22	93,0	92,7	91,3	93,0	92,7	91,3	93,0	92,7	91,3	93,0	93,2	92,4	93,1	93,0	91,9	93,0	92,7	91,3		

	Производитель	*.	90 6	08			Данные дл	я напряжения	400 В / 50 Гц	
P _N	Xylem Service Italia Srl	3MEP IEC	Конструктивное исполнение	Число полюсов	f _N			T _N	 	
кВт	Модель	ĕ	δz	ž	Гц	cosφ	Is / I _N	Нм	Ts/T _N	Tm/Tn
0,75	SM90RB14S/307PE	90R				0,78	7,38	2,48	3,57	3,75
1,1	SM90RB14S/311PE	90R				0,79	8,31	3,63	3,95	3,95
1,5	SM90RB14S/315PE	90R				0,80	8,80	4,96	4,31	4,10
2,2	PLM90B14S2/322 E3	90				0,80	8,77	7,28	3,72	3,70
3	PLM90B14S2/330 E3	90	ЬA			0,79	7,81	9,93	4,26	3,94
4	PLM112RB14S2/340 E3	112R	СПЕЦИАЛЬНАЯ			0,85	9,13	13,2	3,82	4,32
5,5	PLM112B14S2/355 E3	112	ΣŽ	2	50	0,85	10,5	18,1	4,74	5,11
7,5	PLM132B14S2/375 E3	132	亘			0,85	10,2	24,4	3,43	4,76
9,2	PLM132B14S2/392 E3	132	Ö			0,85	10,1	30,0	3,73	4,81
11	PLM132B14S2/3110 E3	132				0,86	9,89	35,9	3,46	4,59
15	PLM160B34S3/3150 E3	160				0,88	9,51	48,6	2,73	4,32
18,5	PLM160B34S3/3185 E3	160				0,88	9,81	59,9	2,81	4,53
22	PLM160B34S3/3220 E3	160				0,85	10,9	71,1	3,26	5,12

					Напр	яжение	U _N							Усповия	эксплуатации	**
						В							Bble	703.023.51	0.00.0.0	•
		Δ			Υ			Δ		,	Υ		авов	Высота	Т наружн.	ATEX
P_N	220 B	230 B	240 B	380 B	400 B	415 B	380 B	400 B	415 B	660 B	690 B	n_N	흩.	над уровнем	мин./макс.	
кВт						I _N (A)						мин ⁻¹	ВНО	моря (м)	°C	
0,75	2,96	2,94	2,96	1,71	1,70	1,71	1,70	1,69	1,70	0,98	0,98	2875 ÷ 2895	иати			
1,1	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	нормативно- ции отходов.			
1,5	5,56	5,49	5,51	3,21	3,17	3,18	3,21	3,18	3,19	1,85	1,84	2870 ÷ 2895	He H			
2,2	7,97	7,90	7,98	4,6	4,56	4,61	4,57	4,54	4,57	2,64	2,62	2880 ÷ 2900	местные 1 утилиза			
3	11,0	11,0	11,2	6,35	6,33	6,44	6,29	6,27	6,34	3,63	3,62	2865 ÷ 2895				
4	13,6	13,4	13,4	7,87	7,75	7,74	7,80	7,62	7,61	4,50	4,40	2885 ÷ 2910	действующие ы в отношени			
5,5	18,1	17,9	18,1	10,4	10,4	10,4	10,6	10,5	10,7	6,10	6,05	2880 ÷ 2910	ТВУК	≤ 1000	-15 / 40	Нет
7,5	24,8	24,4	24,3	14,3	14,1	14,0	14,4	14,1	14,2	8,32	8,16	2920 ÷ 2935				
9,2	30,6	30,1	30,2	17,6	17,4	17,5	17,5	17,2	17,3	10,1	9,93	2920 ÷ 2935				
11	35,7	35,0	34,9	20,6	20,2	20,2	20,6	20,2	20,2	11,9	11,7	2910 ÷ 2930	дай			
15	47,6	46,1	45,2	27,5	26,6	26,1	27,5	26,6	26,1	15,9	15,3	2940 ÷ 2950	Соблюдайте акт			
18,5	58,3	56,7	55,6	33,7	32,7	32,1	34,0	33,0	32,7	19,6	19,0	2940 ÷ 2950	ပိ			
22	72,9	73,1	73,7	42,1	42,2	42,6	40,9	40,4	40,6	23,6	23,3	2950 ÷ 2960				

^{*} R = Уменьшенный размер корпуса двигателя относительно свободного конца вала и соответствующего фланца.

ESHE-IE3-mott-2p50-en_a_te

^{**} Приведенные в этой таблице условия эксплуатации относятся только к двигателю. Для электронасоса действуют ограничения, предусмотренные в руководстве по эксплуатации.

СЕРИЯ ESHS ТРЕХФАЗНЫЕ 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 Гц (до 22 кВт)

								Э	ффекти	вность	η_N									a
										%										уск
		220 B		1	∆ 230 B			∆ 240 B			∆ 380 B			∆ 400 B			∆ 415 B			l lig
P_N	١	7 380 B		,	Y 400 B		,	Y 415 B			Y 660 B			Y 690 B					IE	Год выпуска
кВт	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		
0,75	82,5	83,1	81,3	82,8	82,7	80,1	82,6	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9		
1,1	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4		
1,5	85,6	86,5	85,8	85,9	86,4	84,9	86,0	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0	85,6	86,0	84,0		
2,2	86,5	87,4	86,8	86,4	86,9	85,7	86,6	86,7	85,0	86,4	86,7	85,0	86,4	86,7	85,0	86,4	86,7	85,0		
3	87,2	88,5	88,3	87,5	88,2	87,5	87,5	87,8	86,4	87,2	87,8	86,4	87,2	87,8	86,4	87,2	87,8	86,4		4
4	89,1	90,1	89,2	89,1	90,1	89,2	89,1	90,1	89,2	89,1	90,3	90,4	89,6	90,4	89,9	89,6	90,1	89,2	3	11/201
5,5	89,5	89,6	88,0	89,5	89,6	88,0	89,5	89,6	88,0	89,5	90,3	89,9	89,7	90,0	89,0	89,6	89,6	88,0		7
7,5	90,6	90,5	89,0	90,6	90,5	89,0	90,6	90,5	89,0	90,6	91,0	90,2	90,8	90,8	89,6	90,7	90,5	89,0		
11	91,8	92,3	91,5	91,8	92,3	91,5	91,8	92,3	91,5	91,8	92,3	91,9	92,2	92,5	91,8	92,3	92,4	91,5		
15	92,5	92,4	91,2	92,5	92,4	91,2	92,5	92,4	91,2	92,7	93,3	92,9	93,1	93,3	92,7	92,5	92,4	91,2		
18,5	92,6	93,1	92,4	92,6	93,1	92,4	92,6	93,1	92,4	92,6	93,2	93,0	92,9	93,3	92,8	92,9	93,1	92,4		
22	93,0	92,7	91,3	93,0	92,7	91,3	93,0	92,7	91,3	93,0	93,2	92,4	93,1	93,0	91,9	93,0	92,7	91,3		

	Производитель	ť	106	90			Ланные для	напряжения	400 B / 50 Fu	
P _N	Xylem Service Italia Srl	A3MEP IEC	Конструктивное исполнение	Число полюсов	f _N			T _N		
кВт	Модель	9	Ko.	₹	Гц	cosφ	ls / l _N	Нм	Ts/T _N	Tm/Tn
0,75	SM80B5/307PE	80				0,78	7,38	2,48	3,57	3,75
1,1	SM80B5/311PE	80				0,79	8,31	3,63	3,95	3,95
1,5	SM90RB5/315PE	90R				0,80	8,80	4,96	4,31	4,10
2,2	PLM90B5/322 E3	90	B5			0,80	8,77	7,28	3,72	3,70
3	PLM100RB5/330 E3	100R	65			0,79	7,81	9,93	4,26	3,94
4	PLM112RB5/340 E3	112R		2	50	0,85	9,13	13,2	3,82	4,32
5,5	PLM132RB5/355 E3	132R		2	50	0,85	10,5	18,1	4,74	5,11
7,5	PLM132B5/375 E3	132				0,85	10,2	24,4	3,43	4,76
11	PLM160B35/3110 E3	160				0,88	8,59	35,6	2,36	4,14
15	PLM160B35/3150 E3	160	B35			0,88	9,51	48,6	2,73	4,32
18,5	PLM160B35/3185 E3	160	ככם			0,88	9,81	59,9	2,81	4,53
22	PLM180RB35/3220 E3	180R				0,85	10,9	71,1	3,26	5,12

					Напр	эяжени	∍ U _N						e e	Условия	эксплуатации	1**
		Δ			Υ	В		Δ		,	1		-правовые	P	T	ATEX
P_N	220 B	230 B	240 B	380 B	400 B	415 B	380 B	400 B	415 B	660 B	690 B	n _N	о-п В.	Высота над уровнем	Т наружн. мин./макс.	AIEA
кВт						I _N (A)						мин ⁻¹	нормативно ции отходов	моря (м)	°C	
0,75	2,96	2,94	2,96	1,71	1,70	1,71	1,70	1,69	1,70	0,98	0,98	2875 ÷ 2895	T OT			
1,1	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	HOP BUTIN			
1,5	5,56	5,49	5,51	3,21	3,17	3,18	3,21	3,18	3,19	1,85	1,84	2870 ÷ 2895	отношении утилизации отношении утилизации отношении отначальнии отношении о			
2,2	7,97	7,90	7,98	4,6	4,56	4,61	4,57	4,54	4,57	2,64	2,62	2880 ÷ 2900				
3	11,0	11,0	11,2	6,35	6,33	6,44	6,29	6,27	6,34	3,63	3,62	2865 ÷ 2895	2 Z			
4	13,6	13,4	13,4	7,87	7,75	7,74	7,80	7,62	7,61	4,50	4,40	2885 ÷ 2910	/Muli	≤ 1000	-15 / 40	Нет
5,5	18,1	17,9	18,1	10,4	10,4	10,4	10,6	10,5	10,7	6,10	6,05	2880 ÷ 2910	ОТН	≥ 1000	-13/40	пет
7,5	24,8	24,4	24,3	14,3	14,1	14,0	14,4	14,1	14,2	8,32	8,16	2920 ÷ 2935	деў			
11	35,0	33,9	33,0	20,2	19,6	19,1	20,4	19,6	19,2	11,8	13,3	2935 ÷ 2950	Ооблюдайте д			
15	47,6	46,1	45,2	27,5	26,6	26,1	27,5	26,6	26,1	15,9	15,3	2940 ÷ 2950				
18,5	58,3	56,7	55,6	33,7	32,7	32,1	34,0	33,0	32,7	19,6	19,0	2940 ÷ 2950				
22	72,9	73,1	73,7	42,1	42,2	42,6	40,9	40,4	40,6	23,6	23,3	2950 ÷ 2960	0			

 $^{^{\}star}$ R = Уменьшенный размер корпуса двигателя относительно свободного конца вала и соответствующего фланца.

ESHS-IE3-mott-2p50-en_a_te

^{**} Приведенные в этой таблице условия эксплуатации относятся только к двигателю. Для электронасоса действуют ограничения, предусмотренные в руководстве по эксплуатации.

СЕРИИ ESHF, ESHC ТРЕХФАЗНЫЕ 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 Гц (до 18,5 кВт)

								Э	ффекти	вность	η_N									
										%										выпуска
	Δ	220 B		1	∆ 230 B		1	∆ 240 B			∆ 380 B			∆ 400 B			∆ 415 B			35111
P_N	١	7 380 B		,	400 B		,	Y 415 B		,	Y 660 B			Y 690 B					IE	Род в
кВт	4/4								2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		_
0,75	82,5	83,1	81,3	82,8	82,7	80,1	82,6	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9	82,5	82,0	78,9		
1,1	84,0	84,7	83,4	84,4	84,5	82,5	84,3	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4	84,0	84,0	81,4		
1,5	84,6	85,8	85,4	85,5	86,3	85,2	85,9	86,2	84,8	84,6	85,8	84,8	84,6	85,8	84,8	84,6	85,8	84,8		
2,2	86,5	87,4	86,8	86,4	86,9	85,7	86,6	86,7	85,0	86,4	86,7	85,0	86,4	86,7	85,0	86,4	86,7	85,0		
3	88,7	89,5	89,1	89,1	89,5	88,4	89,1	89,1	87,7	88,7	89,1	87,7	88,7	89,1	87,7	88,7	89,1	87,7		4
4	88,6	89,0	87,6	88,6	89,0	87,6	88,6	89,0	87,6	88,7	89,6	89,1	88,6	89,2	88,3	88,9	89,0	87,6	3	11/201
5,5	90,1	89,8	88,0	90,1	89,8	88,0	90,1	89,8	88,0	90,2	90,5	89,5	90,3	90,2	88,8	90,1	89,8	88,0		7
7,5	90,6	90,5	89,0	90,6	90,5	89,0	90,6	90,5	89,0	90,6	91,0	90,2	90,8	90,8	89,6	90,7	90,5	89,0		Ū
11	91,8	92,3	91,5	91,8	92,3	91,5	91,8	92,3	91,5	91,8	92,3	91,9	92,2	92,5	91,8	92,3	92,4	91,5		
15	92,5	92,4	91,2	92,5	92,4	91,2	92,5	92,4	91,2	92,7	93,3	92,9	93,1	93,3	92,7	92,5	92,4	91,2		
18,5	92,6	93,1	92,4	92,6	93,1	92,4	92,6	93,1	92,4	92,6	93,2	93,0	92,9	93,3	92,8	92,9	93,1	92,4		

	Производитель	ပ	90	90			Ланные для	я напряжения	400 B / 50 Fu	
P _N	Xylem Service Italia Srl	A3MEP IE	Конструктивн исполнение	Число полюсов	f _N			T _N		
кВт	Модель	ь.	Š,	ž	Гц	cosφ	Is / I _N	Нм	Ts/T _N	Tm/Tn
0,75	SM80B3/307PE	80				0,78	7,38	2,48	3,57	3,75
1,1	SM80B3/311PE	80				0,79	8,31	3,63	3,95	3,95
1,5	PLM90B3/315 E3	90				0,86	8,04	4,96	3,34	3,27
2,2	PLM90B3/322 E3	90				0,80	8,77	7,28	3,72	3,70
3	PLM100B3/330 E3	100				0,84	9,65	9,84	3,59	4,26
4	PLM112B3/340 E3	112	В3	2	50	0,86	9,41	13,2	3,95	4,46
5,5	PLM132B3/355 E3	132				0,83	10,0	17,9	3,33	4,65
7,5	PLM132B3/375 E3	132				0,85	10,2	24,4	3,43	4,76
11	PLM160B3/3110 E3	160				0,88	8,59	35,6	2,36	4,14
15	PLM160B3/3150 E3	160				0,88	9,51	48,6	2,73	4,32
18,5	PLM160B3/3185 E3	160				0,88	9,81	59,9	2,81	4,53

					Напр	яжени	e U _N						вые	Условия	эксплуатации	1**
					v	В					,		правоі			
_		Δ						Δ			•	_	О́ві	Высота	Т наружн.	ATEX
P _N	220 B	230 B	240 B	380 B	400 B	415 B	380 B	400 B	415 B	660 B	690 B	n _N	HBH OFFC	над уровнем	мин./макс. ° С	
кВт						I _N (A)						мин ⁻¹	иативн отходо	моря (м)	C	
0,75	2,96	2,94	2,96	1,71	1,70	1,71	1,70	1,69	1,70	0,98	0,98	2875 ÷ 2895				
1,1	4,19	4,14	4,16	2,42	2,39	2,40	2,41	2,38	2,38	1,39	1,37	2870 ÷ 2900	ые н			
1,5	5,35	5,11	5,04	3,09	2,95	2,91	3,09	2,96	2,91	1,78	1,71	2865 ÷ 2890	местные 1 утилиза			
2,2	7,97	7,90	7,98	4,60	4,56	4,61	4,57	4,54	4,57	2,64	2,62	2880 ÷ 2900	ствующие местные нор отношении утилизации			
3	10,2	10,0	10,1	5,91	5,79	5,82	5,94	5,83	5,87	3,43	3,37	2895 ÷ 2920	ощи			
4	13,3	13,1	13,1	7,69	7,56	7,55	7,70	7,56	7,57	4,45	4,36	2885 ÷ 2905	твун	≤ 1000	-15 / 40	Нет
5,5	18,9	18,8	18,9	10,9	10,9	10,9	10,7	10,6	10,7	6,20	6,14	2925 ÷ 2940	ейс			
7,5	24,8	24,4	24,3	14,3	14,4	14,0	14,4	14,1	14,2	8,32	8,16	2920 ÷ 2935	йте действующие м акты в отношении			
11	35,0	33,9	33,0	20,2	19,6	19,1	20,4	19,6	19,2	11,8	11,3	2935 ÷ 2950	Соблюдайте акт			
15	47,6	46,1	45,2	27,5	26,6	26,1	27,5	26,6	26,1	15,9	15,3	2940 ÷ 2950	опо			
18,5	58,3	56,7	55,6	33,7	32,7	32,1	34,0	33,0	32,7	19,6	19,0	2940 ÷ 2950	ဝိ			

^{**} Приведенные в этой таблице условия эксплуатации относятся только к двигателю. Для электронасоса действуют ограничения, предусмотренные в руководстве по эксплуатации.

ESHF-IE3-mott18-2p50-en_a_te

СЕРИИ ESHS (B35 от 30 до 37 кВт) СЕРИИ ESHF (B3 от 22 до 75 кВт) ТРЕХФАЗНЫЕ 2-ПОЛЮСНЫЕ ЭЛЕКТРОДВИГАТЕЛИ, 50 ГЦ

				90	ффективность	η _N					_
					%						ыпуска
		∆ 380 B			∆ 400 B			∆ 415 B			Bell
P_N		Y 660 B			Y 690 B					IE	Од
кВт	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		_
22	93,4	93,2	92,7	93,7	93,3	92,5	93,8	93,3	92,3		
30	94,0	94,0	93,1	94,1	94,0	92,8	94,2	93,9	92,6		
37	94,4	94,0	93,5	94,6	94,0	93,3	94,7	93,9	93,1	3	11/2014
45	94,8	94,9	94,6	95,1	95,1	94,6	95,3	95,2	94,5	ر	
55	95,1	95,0	94,9	95,4	95,3	94,9	95,5	95,3	94,8		O
75	95,4	95,2	94,6	95,6	95,3	94,5	95,7	95,3	94,4		

	Производитель	*	90	ОВ						
	Xylem Service Italia Srl	3MEP IEC	Конструктивное исполнение	полюсов			Данные д	пя напряжения	я 400 B / 50 Гц	
P_{N}		43K	нстр АСПО	Число	f_N			T _N		
кВт	Модель	9	Š.	ž	Гц	cosφ	ls / l _N	Нм	Ts/T _N	Tm/Tn
22	W22 180M B3 22KW E3	180	В3			0,87	8,00	71,10	2,50	3,30
30	W22 200L B3 30KW E3	200	В3			0.86	7.30	96.60	2,60	2.90
30	W22 200L B35 30KW E3	200	B35			0,60	7,30	90,00	2,00	2,90
37	W22 200L B3 37KW E3	200	В3	2	50	0,86	7,30	119.2	2,60	2,90
37	W22 200L B35 37KW E3	200	B35	2	50	0,00	7,50	119,2	2,00	2,90
45	W22 225S/M B3 45KW E3	225				0,88	8,00	144,7	2,70	3,20
55	W22 250S/M B3 55KW E3	250	В3			0,89	7,90	177,1	2,80	2,90
75	W22 280S/M B3 75KW E3	280				0,90	7,60	240,3	2,30	2,90

			Напряжение U В	N				Условия	эксплуатации	1**
		Δ		,	Y			Высота	Т наружн.	ATEX
P_N	380 B	400 B	415 B	660 B	690 B	n _N	ai.	над уровнем	мин./макс.	
кВт			I _N (A)			мин ⁻¹	ание	моря (м)	° C	
22	40,70	39,00	37,90	23,40	22,60	2950 ÷ 2960				
30	55,10	53,50	52,70	31,70	31,00	2960 ÷ 2970	приме			
37	67,70	65,60	64,70	39,00	38,00	2960 ÷ 2970	Ö	≤ 1000	-15 / 40	
45	80,10	77,60	74,60	46,10	45,00	2965 ÷ 2970		≥ 1000	-13/40	Нет
55	97,60	93,50	91,00	56,20	54,20	2960 ÷ 2965				
75	131,0	126,0	121,0	75,40	73,00	2975 ÷ 2980				

^{**} Условия эксплуатации относятся только к двигателю. Для электронасосов пределы см. в руководстве пользователя.

ESHF-IE3-mott75-2p50-en_a_te

Примечание: Соблюдайте действующие местные нормативно-правовые акты в отношении утилизации отходов.

СЕРИЯ ESHE ТРЕХФАЗНЫЕ 4-ПОЛЮСНЫЕ ЭЛЕКТРОДВИГАТЕЛИ, 50 ГЦ

								Эс	ффекти	вность	η_N									
										%										выпуска
	7	220 B		1	∆ 230 B		1	∆ 240 B			∆ 380 B			∆ 400 B			∆ 415 B			361
P_N	١	7 380 B		,	Y 400 B		,	Y 415 B			Y 660 B			Y 690 B					IE	Род
кВт	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		_
0,25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
0,37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	.01
0,55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	06/20
0,75	80,4	81,3	79,8	81,1	81,4	79,1	81,4	81,2	78,4	80,4	81,2	78,4	80,4	81,2	78,4	80,4	81,2	78,4	2	0
1,1	84,9	85,7	84,7	85,3	85,5	83,8	85,3	85	82,7	84,9	85	82,7	84,9	85	82,7	84,9	85	82,7		
1,5	86,6	87	85,7	86,7	86,9	84,5	86,4	85,9	83,3	86,4	85,9	83,3	86,4	85,9	83,3	86,4	85,9	83,3		
2,2	87,6	88,6	88,3	88,2	88,8	87,9	88,5	88,7	87,4	87,6	88,6	87,4	87,6	88,6	87,4	87,6	88,6	87,4		
3	88,5	89,2	88,5	88,6	88,9	87,6	88,6	88,6	86,8	88,5	88,6	86,8	88,5	88,6	86,8	88,5	88,6	86,8	2	11/2014
4	88,6	89,1	87,9	88,6	89,1	87,9	88,6	89,1	87,9	88,6	89,2	88,9	88,6	89,2	88,4	88,8	89,1	87,9	ک	11/2
5,5	90,4	90,9	89,7	90,4	90,9	89,7	90,4	90,9	89,7	90,4	91,0	90,5	90,9	91,1	90,2	90,9	90,9	89,7		Ö
7,5	90,4	91,2	90,4	90,4	91,2	90,4	90,4	91,2	90,4	90,4	91,2	91,1	90,7	91,3	90,8	90,9	91,2	90,4		
11	91,5	92,2	91,4	91,5	92,2	91,4	91,5	92,2	91,4	91,5	92,4	92,4	91,9	92,5	92,0	91,9	92,2	91,4		

	Производитель	*.	90	90			Ланные пп	я напряжения	400 B / 50 Fu	
P _N	Xylem Service Italia Srl	A3MEP IEC	Конструктивное исполнение	исло полюсов	f _N			T _N		
кВт	Модель	ь.	Ķ	<u>-</u>	Гц	cosφ	ls / l _N	Нм	Ts/T _N	Tm/Tn
0,25	SM471B5/302	71	B5			0,59	3,58	1,71	3,16	2,63
0,37	SM471B5/304	71	כט			0,60	3,39	2,57	3,40	2,47
0,55	SM490RB14S2/305	90R				0,67	3,95	3,77	2,45	2,38
0,75	LLM490RB5S2/307 IE2	90R				0,75	5,78	5,03	2,77	3,31
1,1	PLM490B5S2/311 E3	90				0,71	6,22	7,28	2,75	3,44
1,5	PLM490B5S2/315 E3	90	_	4	50	0,68	6,92	9,89	3,29	4,01
2,2	PLM4100B5S3/322 E3	100	HAS	4	50	0,78	7,47	14,5	2,38	3,69
3	PLM4100B5S3/330 E3	100	АЛЬ			0,74	7,75	19,7	2,48	4,21
4	PLM4112B5S3/340 E3	112	Į.			0,79	8,32	26,3	3,19	4,02
5,5	PLM4132B14S4/355 E3	132	СПЕЦИАЛЬНАЯ			0,76	7,64	35,9	2,85	3,65
7,5	PLM4132B14S4/375 E3	132				0,79	7,70	49,1	2,69	3,57
11	PLM4160B34S4/3110 E3	160				0,81	7,19	71,5	2,45	3,26

					Напр	эхени	∍ U _N							Условия	эксплуатации	l**
		Δ			v	В		Δ		,	v		Эвые			
P _N	220 B	230 B	240 B	380 B	400 B	415 B	380 B	400 B	415 B	660 B	690 B	n _N	правовые	Высота над уровнем	Т наружн. мин./макс.	ATEX
кВт						I _N (A)						мин ⁻¹	1 .	моря (м)	°C	
0,25	1,68	1,71	1,77	0,97	0,99	1,02	-	-	-	-	-	1375 ÷ 1400	нормативно ции отходов			
0,37	2,46	2,53	2,62	1,42	1,46	1,51	-	-	-	-	-	1355 ÷ 1380	O Z			
0,55	2,98	3,03	3,1	1,72	1,75	1,79	-	-	-	-	-	1380 ÷ 1400	ые н			
0,75	3,08	3,03	3,01	1,78	1,75	1,74	1,78	1,75	1,74	1,03	1,01	1410 ÷ 1430	те действующие местные норг акты в отношении утилизации			
1,1	4,61	4,59	4,62	2,66	2,65	2,67	2,64	2,63	2,65	1,53	1,52	1435 ÷ 1445	M Y			
1,5	6,34	6,41	6,41	3,66	3,7	3,7	3,65	3,68	3,69	2,11	2,13	1440 ÷ 1450	ПЕН	≤ 1000	-15 / 40	Цот
2,2	8,19	8,04	7,97	4,73	4,64	4,6	4,70	4,62	4,56	2,71	2,67	1445 ÷ 1455	Вую	≥ 1000	-13/40	Нет
3	11,5	11,5	11,5	6,66	6,62	6,67	6,63	6,59	6,63	3,83	3,81	1450 ÷ 1460	в о			
4	14,8	14,6	14,5	8,52	8,40	8,36	8,40	8,23	8,19	4,85	4,75	1445 ÷ 1455	Te A			
5,5	20,0	19,7	19,4	11,6	11,4	11,2	11,7	11,5	11,4	6,75	6,62	1455 ÷ 1465	Соблюдайте акт			
7,5	26,6	26,1	25,8	15,4	15,1	14,9	15,5	15,2	15,1	8,95	8,75	1450 ÷ 1460	блю			
11	38,3	37,3	37,5	22,1	21,8	21,7	21,9	21,4	21,3	12,6	12,3	1465 ÷ 1470	ဝိ			

ESHE-IE3-mott-4p50-en_a_te

СЕРИЯ ESHS (B5/B35 от 0,55 до 11 кВт) СЕРИИ ESHF (B3 от 0,25 до 11 кВт) ТРЕХФАЗНЫЕ 4-ПОЛЮСНЫЕ ЭЛЕКТРОДВИГАТЕЛИ, 50 ГЦ

								Э:	ффекти	вность	η_{N}									
										%										УСК
	L	1 220 B			∆ 230 B			∆ 240 B			∆ 380 B			∆ 400 B			∆ 415 B	1		Ę
\mathbf{P}_{N}	١	Y 380 B		,	Y 400 B		,	Y 415 B			Y 660 B			Y 690 B					IE	Год выпуска
кВт	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4	4/4	3/4	2/4		Ľ
0,25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0,37	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10
0,55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	06/2
0,75	80,4	81,3	79,8	81,1	81,4	79,1	81,4	81,2	78,4	80,4	81,2	78,4	80,4	81,2	78,4	80,4	81,2	78,4	2	0
1,1	84,9	85,7	84,7	85,3	85,5	83,8	85,3	85	82,7	84,9	85	82,7	84,9	85	82,7	84,9	85	82,7		
1,5	86,6	87	85,7	86,7	86,9	84,5	86,4	85,9	83,3	86,4	85,9	83,3	86,4	85,9	83,3	86,4	85,9	83,3		
2,2	87,6	88,6	88,3	88,2	88,8	87,9	88,5	88,7	87,4	87,6	88,6	87,4	87,6	88,6	87,4	87,6	88,6	87,4		4
3	88,5	89,2	88,5	88,6	88,9	87,6	88,6	88,6	86,8	88,5	88,6	86,8	88,5	88,6	86,8	88,5	88,6	86,8	3	11/2014
4	88,6	89,1	87,9	88,6	89,1	87,9	88,6	89,1	87,9	88,6	89,2	88,9	88,6	89,2	88,4	88,8	89,1	87,9	ر	C 11
5,5	90,4	90,9	89,7	90,4	90,9	89,7	90,4	90,9	89,7	90,4	91,0	90,5	90,9	91,1	90,2	90,9	90,9	89,7		
7,5	90,4	91,2	90,4	90,4	91,2	90,4	90,4	91,2	90,4	90,4	91,2	91,1	90,7	91,3	90,8	90,9	91,2	90,4		
11	91,5	92,2	91,4	91,5	92,2	91,4	91,5	92,2	91,4	91,5	92,4	92,4	91,9	92,5	92,0	91,9	92,2	91,4		

	Производитель	ပ	90 6	90			Ланные лп	я напряжения	400 B / 50 Fu	
P _N	Xylem Service Italia Srl	PA3MEP IEC	Конструктивное исполнение	число полюсов	f _N			T _N		
кВт	Модель	<u> </u>	δ	ž	Гц	cosφ	Is / I _N	Нм	Ts/T _N	Tm/Tn
0,25	SM471B3/302	71	В3			0,59	3,58	1,71	3,16	2,63
0,37	SM471B3/304	71	כם			0,60	3,39	2,57	3,40	2,47
0,55	SM480B3/305	80	В3			0,67	3,95	3,77	2,45	2,38
0,55	SM480B5/305	00	B5			0,07	3,33	3,77	2,43	2,50
0,75	LLM480B3/307 IE2	80	В3			0,75	5,78	5,03	2,77	3,31
0,73	LLM480B5/307 IE2	00	B5			0,73	3,70	3,03	2,77	3,31
1,1	PLM490B3/311 E3	90	В3			0,71	6,22	7,28	2,75	3,44
','	PLM490B5/311 E3	30	B5			0,71	0,22	7,20	2,73	3,17
1,5	PLM490B3/315 E3	90	В3			0,68	6,92	9,89	3,29	4,01
1,5	PLM490B5/315 E3	30	B5			0,00	0,52	3,03	3,23	4,01
2,2	PLM4100B3/322 E3	100	В3	4	50	0,78	7,47	14,5	2,38	3,69
-,-	PLM4100B5/322 E3	100	B5		30	0,70	,,,,	,5	2,50	3,03
3	PLM4100B3/330 E3	100	В3			0,74	7,75	19,7	2,48	4,21
	PLM4100B5/330 E3	100	B5			0,7 1	,,,,	13,7	2,10	1,21
4	PLM4112B3/340 E3	112	В3			0,79	8,32	26,3	3,19	4,02
	PLM4112B5/340 E3		B5			0,73	0,32	20,5	3,13	1,02
5,5	PLM4132B3/355 E3	132	В3			0,76	7,64	35,9	2,85	3,65
3,3	PLM4132B5/355 E3	132	B5			0,70	,,,,,	33,3	2,03	3,03
7,5	PLM4132B3/375 E3	132	В3			0,79	7,70	49.1	2,69	3,57
.,5	PLM4132B5/375 E3	.52	B5			5,7,5	.,, 0	.3,1	2,03	2,3,
11	PLM4160B3/3110 E3	160	В3			0,81	7,19	71,5	2,45	3,26
	PLM4160B35/3110 E3	100	B35			0,01	,,,,,	, 1,5	2,13	3,20

					Напр	эяжени	e U _N						ā	Условия	эксплуатации	**
						В							10Bb			
		Δ			Υ			Δ		,	′		рав	Высота	Т наружн.	ATEX
P_N	220 B	230 B	240 B	380 B	400 B	415 B	380 B	400 B	415 B	660 B	690 B	n_N	- 년 - 명	над уровнем	мин./макс.	
кВт						I _N (A)						мин ⁻¹	нормативно-правовые ции отходов.	моря (м)	°C	
0,25	1,68	1,71	1,77	0,97	0,99	1,02	-	-	-	-	-	1375 ÷ 1400	рма и от			
0,37	2,46	2,53	2,62	1,42	1,46	1,51	-	-	-	-	-	1355 ÷ 1380				
0,55	2,98	3,03	3,10	1,72	1,75	1,79	-	-	-	-	-	1380 ÷ 1400	іестные нор утилизации			
0,75	3,08	3,03	3,01	1,78	1,75	1,74	1,78	1,75	1,74	1,03	1,01	1410 ÷ 1430				
1,1	4,61	4,59	4,62	2,66	2,65	2,67	2,64	2,63	2,65	1,53	1,52	1435 ÷ 1445				
1,5	6,34	6,41	6,41	3,66	3,7	3,7	3,65	3,68	3,69	2,11	2,13	1440 ÷ 1450	'Your	≤ 1000	-15 / 40	Нет
2,2	8,19	8,04	7,97	4,73	4,64	4,6	4,70	4,62	4,56	2,71	2,67	1445 ÷ 1455	действующие ы в отношени	≥ 1000	-13/40	1101
3	11,5	11,5	11,5	6,66	6,62	6,67	6,63	6,59	6,63	3,83	3,81	1450 ÷ 1460	дей ы в			
4	14,8	14,6	14,5	8,52	8,40	8,36	8,40	8,23	8,19	4,85	4,75	1445 ÷ 1455	йте де акты			
5,5	20,0	19,7	19,4	11,6	11,4	11,2	11,7	11,5	11,4	6,75	6,62	1455 ÷ 1465	Соблюдайте акт			
7,5	26,6	26,1	25,8	15,4	15,1	14,9	15,5	15,2	15,1	8,95	8,75	1450 ÷ 1460	Эбль			
11	38,3	37,3	37,5	22,1	21,8	21,7	21,9	21,4	21,3	12,6	12,3	1465 ÷ 1470	ŏ			

^{**} Приведенные в этой таблице условия эксплуатации относятся только к двигателю. Для электронасоса действуют ограничения, предусмотренные в руководстве по эксплуатации.

ESHF-IE3-mott11-4p50-en_a_te

ШУМОВЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ

В таблицах указаны средние значения звукового давления (Lp), измеренные на расстоянии 1 м в соответствии с кривой A (стандарт ISO 1680).

Показатели шума измерялись в режиме холостого хода двигателя при частоте 50 Гц с допустимой погрешностью 3 дБ (A).

ДВИГАТЕЛИ ESHE, ESHS 2 ПОЛЮСА, 50 Гц

мощность	ТИП ДВИГАТЕЛЯ	ШУМ
		LpA
кВт	PA3MEP IEC	дБ
0,75	90R	<70
1,1	90R	<70
1,5	90R - 90	<70
2,2	90	< 70
3	90	<70
3	100R	<70
4	112R	<70
5,5	112	<70
5,5	132R	<70
7,5	132	71
9,2	132	73
11	132	73
11	160R	73
11	160	71
15	160	71
18,5	160	73
22	160	70
22	180R	70
30	200	69
37	200	69

ДВИГАТЕЛИ ESHE 4 ПОЛЮСА, 50 ГЦ

мощность	ТИП ДВИГАТЕЛЯ	ШУМ
		LpA
кВт	PA3MEP IEC	дБ
0,25	71	<70
0,37	71	<70
0,55	90R	<70
0,75	90R	<70
1,1	90	<70
1,5	90	<70
2,2	100	<70
3	100	<70
4	112	<70
5,5	132	<70
7,5	132	<70
11	160	<70

мощность	ТИП ДВИГАТЕЛЯ	ШУМ
		LpA
кВт	PA3MEP IEC	дБ
0,75	80	<70
1,1	80	< 70
1,5	90	<70
2,2	90	<70
3	100	<70
4	112	< 70
5,5	132	71
7,5	132	71
11	160	71
15	160	71
18,5	160	73
22	180	67
30	200	69
37	200	69
45	225	74
55	250	74
75	280	77

ДВИГАТЕЛИ ESHF, ESHC

2 ПОЛЮСА, 50 Гц

ДВИГАТЕЛИ ESHS, ESHF 4 ПОЛЮСА, 50 Гц

мощность	ТИП ДВИГАТЕЛЯ	ШУМ
		LpA
кВт	PA3MEP IEC	дБ
0,25	71	<70
0,37	71	< 70
0,55	80	<70
0,75	80	<70
1,1	90	<70
1,5	90	<70
2,2	100	<70
3	100	<70
4	112	<70
5,5	132	<70
7,5	132	<70
11	160	<70

^{*} R = Уменьшенный размер корпуса двигателя относительно свободного конца вала и соответствующего фланца.

ESH_mott_a_tr

ErP 2009/125/EC

НАСОСЫ СЕРИИ e-SH

В последнее десятилетие Европейская комиссия по планированию энергетической эффективности оказала влияние на Европейский парламент и Совет Европы принять меры с целью снижения энергопотребления и дальнейшего отрицательного воздействия на окружающую среду. Согласно Директивам 2005/32/ЕС по энергопотребляющим продуктам (EuP) и 2009/125/ЕС по продуктам, связанным с энергией (ErP), установлены рамочные требования по экодизайну.

Постановление комиссии (EU) № 547/2012 утвердило две директивы в отношении требований к экодизайну некоторых типов насосов для перекачки чистой воды, производимых и подлежащих эксплуатации в пределах зоны ЕС в качестве самостоятельных агрегатов или в качестве элементов для другого оборудования.

Для моноблочных консольных насосов (в Постановлении – ESCC) и консольных насосов на раме (в Постановлении – ESOB) оценка эффективности включает:

- только гидравлическую часть без двигателя;
- насосы только с одним рабочим колесом;
- насосы с номинальным давлением РN не выше 16 бар (1600 кПа);
- насосы с минимальным номинальным расходом не менее 6 м³/ч;
- насосы с максимальной номинальной мощностью на валу не выше 150 кВт;
- насосы со скоростью вращения вала 2900 мин⁻¹ (2-полюсные электродвигатели на 50 Гц) и напором не выше 140 метров;
- насосы со скоростью вращения вала 1450 мин⁻¹ (4-полюсные электродвигатели на 50 Гц) и напором не выше 90 метров:
- используемые для перекачки чистой воды при температуре от -10° C до 120° C (испытания проводятся с водой при температуре не выше 40° C).

Согласно определениям, зафиксированным в Постановлении, версии NSCE и NSCS соответствуют типу «моноблочные консольные насосы», а версии NSC, NSCF и NSCC соответствуют типу «консольные насосы на раме». Это постановление предписывает, что насосы должны иметь индекс минимальной эффективности MEI, определяющийся по формуле, включающей значения гидравлического КПД как «точки оптимального КПД» (best efficiency point – BEP), 75% расхода на BEP (частичная нагрузка; Part load – PL) и 110% расхода на BEP (перегрузка; Over load – OL).

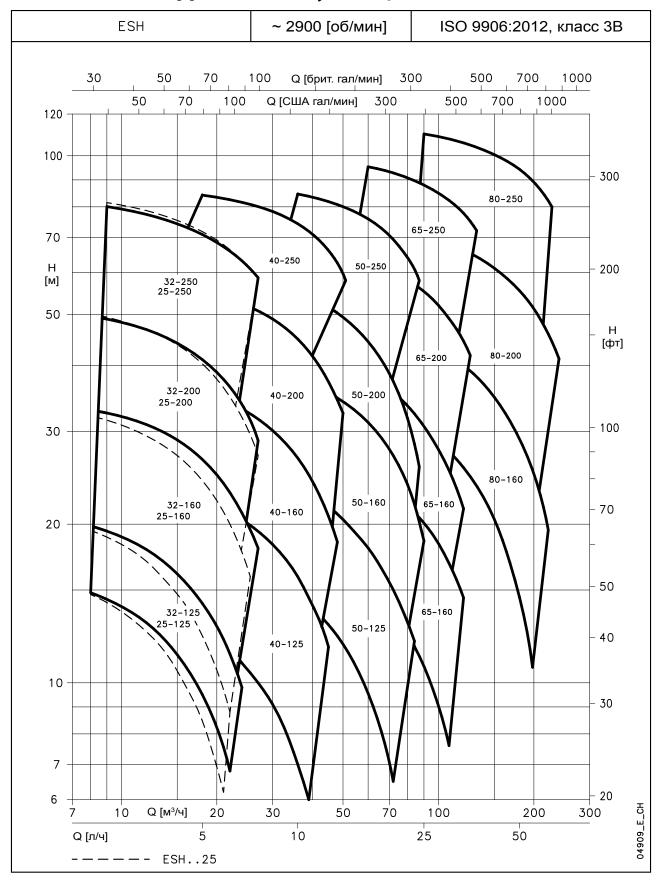
Постановление устанавливает следующие сроки

ОТ	индекс минимальной эффективности (MEI)
1 января 2013 г.	MEI ≥ 0,1
1 января 2015 г.	MEI ≥ 0,4

Постановление (EU) № 547/2012 — Приложение II — Пункт 2 (Требования к информации о продукте)

- 1) Индекс минимальной эффективности: значения МЕІ см. в таблице на странице 35.
- 2) «Целевой уровень наиболее эффективных водяных насосов составляет MEI ≥ 0,70».
- 3) Год выпуска: 2014
- 4) Производитель: Xylem Service Italia Srl Per. № 07520560967 Montecchio Maggiore, Vicenza, Italy (Италия).
- 5) Тип продукта: см. столбец ТИП НАСОСА в таблицах раздела «Гидравлические характеристики».
- 6) Гидравлический КПД насоса с подрезанным рабочим колесом: см. столбцы пр и ØТ в таблицах раздела «Гидравлические характеристики».
- 7) Кривые характеристики насоса, включая кривую производительности: см. графики «Рабочие характеристики» на следующих страницах.
- 8) «Эффективность насоса с подрезанным рабочим колесом обычно ниже, чем у насоса с рабочим колесом полного диаметра. Подрезка рабочего колеса адаптирует рабочее колесо насоса к необходимой рабочей точке, ведя к пониженному энергопотреблению. Индекс минимальной эффективности (МЕІ) основывается на показаниях работы с полном диаметром рабочего колеса».
- 9) «Работа насоса с изменяющимися рабочими точками может быть более эффективной и экономичной при управлении с помощью частотно- регулируемого привода, позволяющему адаптировать насос с потребностями системы».
- 10) Сведения о демонтаже и утилизации: соблюдайте действующие законы и постановления по утилизации отходов. См. руководство по эксплуатации продукта.
- 11) Пометка «Рассчитан на использование только при температуре ниже -10° С» к данным продуктам неприменима.
- 12) Пометка «Рассчитан на использование только при температуре выше 120° С» к данным продуктам неприменима.
- 13) Специфические инструкции для насосов согласно пунктам 11 и 12: к этим продуктам неприменимы.
- 14) «Сведения о целевом уровне эффективности доступны на»: www.europump.org (Раздел «Экодизайн»).
- 15) Графики целевого уровня эффективности с MEI = 0,7 и MEI = 0,4 доступны на www.europump.org/efficiencycharts (см. «ESCC 1450 rpm», «ESCC 2900 rpm», «ESOB 1450 rpm», «ESOB 2900 rpm»).

СЕРИЯ ESH ИНДЕКС МИНИМАЛЬНОЙ ЭФФЕКТИВНОСТИ (MEI)


	2-ПОЛЮСНЫЙ	
PA3MEP HACOCA	ESH, ESHE	ESHS
TAGME! TIAGGGA	ESHF, ESHC	23113
25-125/128	≥0,40	≥0,40
25-160/160	≥0,40	≥0,40
25-200/199	≥0,40	≥0,40
25-250/245	≥0,40	≥0,40
32-125/128	≥0,40	≥0,40
32-160/160	≥0,40	≥0,40
32-200/199	≥0,40	≥0,40
32-250/245	≥0,40	≥0,40
40-125/135	≥0,40	≥0,40
40-160/171	≥0,40	≥0,40
40-200/209	≥0,40	≥0,40
40-250/251	≥0,40	≥0,40
50-125/137	≥0,40	≥0,40
50-160/174	≥0,40	≥0,40
50-200/209	≥0,40	≥0,40
50-250/250	≥0,40	≥0,40
65-160/176	≥0,40	≥0,40
65-200/215	≥0,40	≥0,40
65-250/255	≥0,40	≥0,40
80-160/186	≥0,40	≥0,40
80-200/226	≥0,40	≥0,40
80-250/270	≥0,40	≥0,40

4	1-ПОЛЮСНЫЙ	
PA3MEP HACOCA	ESH, ESHE ESHF	ESHS
25-125/128	≥0,40	≥0,40
25-160/160	≥0,40	≥0,40
25-200/199	≥0,40	≥0,40
25-250/245	≥0,40	≥0,40
32-125/128	≥0,40	≥0,40
32-160/160	≥0,40	≥0,40
32-200/199	≥0,40	≥0,40
32-250/245	≥0,40	≥0,40
40-125/135	≥0,40	≥0,40
40-160/171	≥0,40	≥0,40
40-200/209	≥0,40	≥0,40
40-250/251	≥0,40	≥0,40
50-125/137	≥0,40	≥0,40
50-160/174	≥0,40	≥0,40
50-200/209	≥0,40	≥0,40
50-250/250	≥0,40	≥0,40
-	-	-
65-200/219	≥0,40	≥0,40
65-250/255	≥0,40	≥0,40
80-160/186	≥0,40	≥0,40
80-200/220	≥0,40	≥0,40
80-250/270	≥0,40	≥0,40

ESH-MEI-en_a_sc

СЕРИЯ ESH ДИАПАЗОН ГИДРАВЛИЧЕСКИХ ХАРАКТЕРИСТИК, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 Гц

СЕРИЯ ESH 25, 32, 40, 50 ТАБЛИЦА ГИДРАВЛИЧЕСКИХ ХАРАКТЕРИСТИК, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 Гц

тип										Q=	: ПОДАЧ	łΑ					
HACOCA		ØF	ηр %	ØΤ	л/с 0	2,0	2,5	3,1	3,6	4,2	4,7	5,3	5,9	6,4	7,0	7,5	8,1
	P_N				м³/ч 0	7	9	11	13	15	17	19	21	23	25	27	29
	кВт	(1)	(2)	(3)				н = по	лный і	НАПОР,	METPO	в водя	ного с	толба			
25-125/07*	0,75		64,0	114	16,3		14,7	13,8	12,8	11,7	10,5	9,2					
25-125/11*	1,1	128	66,1		20,8		19,3	18,6	17,6	16,6	15,4	14,2	12,8				
25-160/15*	1,5		61,3	145	26,5		25,2	24,2	22,8	21,3	19,4	17,4	15,1	12,5			
25-160/22*	2,2	160	63,2		32,8		31,6	30,7	29,5	28,1	26,4	24,6	22,5	20,2	17,7		
25-200/30	3		52,5	182	43,0		39,8	38,3	36,6	34,5	32,1	29,4	26,4	23,0			
25-200/40	4	199	54,2		52,2		49,0	47,6	45,9	44,0	41,7	39,3	36,5	33,4	30,1		
25-250/55	5,5		47,6	208	57,7		55,9	54,8	53,3	51,5	49,6	47,4	44,7	41,2			
25-250/75	7,5		49,2	228	70,5		68,4	67,5	66,2	64,6	62,7	60,6	58,4	55,8	52,7		
25-250/110	11	245	50,7		82,6		80,3	79,4	78,2	76,6	74,8	72,8	70,7	68,3	65,7		
32-125/07*	0,75		62,2	114	16,1		14,5	13,6	12,5	11,2	9,7	8,1	6,4				
32-125/11*	1,1	128	64,4		20,6		19,2	18,4	17,3	16,1	14,8	13,3	11,7	10,0			
32-160/15*	1,5		58,3	145	26,9		24,9	23,8	22,3	20,6	18,5	16,2	13,7	11,1			
32-160/22*	2,2	160	60,2		33,1		31,3	30,3	29,0	27,5	25,6	23,5	21,2	18,7	16,0		
32-200/30	3		50,8	182	43,4		39,2	37,6	35,6	33,3	30,6	27,7	24,4	20,9			
32-200/40	4	199	52,5		52,6		48,3	46,8	44,9	42,8	40,3	37,6	34,5	31,2	27,6		
32-250/55	5,5		46,1	208	57,5	55,7	55,0	53,9	52,4	50,5	48,3	45,9	43,2				
32-250/75	7,5		47,7	228	70,3		67,5	66,5	65,2	63,5	61,5	59,2	56,7	54,0	50,9		
32-250/110	11	245	49,2		82,3		79,2	78,3	77,0	75,4	73,6	71,4	69,1	66,5	63,7	60,6	57,2

тип										Q=	= ПОДАЧ	łA					
HACOCA		ØF	ηр %	ØΤ	л/с 0	5,0	5,8	6,7	7,5	8,3	9,2	10,0	10,8	11,7	12,5	13,3	14,2
	P_N				м³/ч 0	18	21	24	27	30	33	36	39	42	45	48	51
	кВт	(1)	(2)	(3)				Н = П	олный	НАПОР	, METPO	ов вод	яного	столь	A		
40-125/11*	1,1		66,6	111	15,7	12,8	11,8	10,7	9,5	8,3	6,9	5,5	4,0				
40-125/15*	1,5		68,2	122	19,1	16,4	15,5	14,4	13,3	12,1	10,8	9,4	8,0	6,5			
40-125/22*	2,2	135	70,1		23,7	21,1	20,2	19,2	18,1	17,0	15,7	14,4	13,0	11,5	10,1		
40-160/30	3		67,5	159	32,1	29,4	28,3	27,0	25,6	24,1	22,5	20,7	18,9	17,0	15,1		
40-160/40	4	171	69,5		37,9	35,4	34,4	33,2	31,8	30,2	28,5	26,7	24,8	22,7	20,7	18,6	
40-200/55	5,5		65,0	190	49,1	46,3	45,2	43,8	42,2	40,4	38,4	36,1	33,7	31,0	28,1	25,0	
40-200/75	7,5	209	66,5		58,2	55,1	53,9	52,4	50,8	49,0	47,0	44,9	42,5	40,0	37,3	34,4	
40-250/92	9,2		58,0	218	64,9	62,0	60,9	59,6	58,1	56,2	54,1	51,5	48,4	44,6			
40-250/110A	11,0		58,0	218	64,9	62,0	60,9	59,6	58,1	56,2	54,1	51,5	48,4	44,6			
40-250/110	11		58,5	233	74,6	71,3	70,3	69,0	67,6	65,9	63,8	61,5	58,6	55,2	51,3		
40-250/150	15	251	59,0		87,7	84,0	82,9	81,6	80,1	78,4	76,6	74,4	72,0	69,3	66,1	62,4	58,2

тип										Q =	= ПОДА	-IA					
HACOCA		ØF	ηр %	ØT	л/с 0	10	11	12,73	14,09	15,45	16,82	18,18	19,55	20,91	22,27	23,636	25
	P_N				м³/ч 0	36	41	46	51	56	61	65	70	75	80	85	90
	кВт	(1)	(2)	(3)			,	Н = П	олный	НАПОГ	, METP	ов вод	яного	столь	A		
50-125/22*	2,2		72,9	114	16,8	14,3	13,4	12,4	11,2	9,8	8,4	6,9	5,4				
50-125/30	3		74,6	125	20,4	18,2	17,4	16,5	15,4	14,2	12,9	11,4	9,9	8,3			
50-125/40	4	137	76,5		24,7	22,7	22,0	21,2	20,3	19,2	18,0	16,7	15,3	13,8	12,2		
50-160/55	5,5		72,0	158	34,0	30,5	29,5	28,3	26,9	25,5	23,9	22,2	20,4	18,5	16,4		
50-160/75	7,5	174	74,0		40,7	37,4	36,3	35,2	33,9	32,6	31,0	29,4	27,6	25,6	23,5	21,1	18,6
50-200/92	9,2		70,0	197	52,9	47,4	45,8	43,8	41,7	39,3	36,7	33,8	30,7	27,4	23,7		
50-200/110A	11		70,0	197	52,9	47,4	45,8	43,8	41,7	39,3	36,7	33,8	30,7	27,4	23,7		
50-250/110	11	209	72,0		38,5	54,5	37,9	37,3	36,4	35,2	33,6	31,6	29,3	26,5	23,5	27,2	
50-250/150	15		69,5	224	70,2	66,6	65,4	64,0	62,4	60,4	58,1	55,3	52,0	48,1			
50-250/185	18,5		68,4	237	79,9	74,9	73,6	72,1	70,4	68,4	66,2	63,6	60,7	57,3	53,4		
50-250/220	22	250	67,3		88,9							84,5	83,7	82,8	81,9	80,9	79,8

Гидравлические характеристики в соответствии с ISO 9906:2012, класс 3В (бывш. ISO 9906:1999, Приложение A)

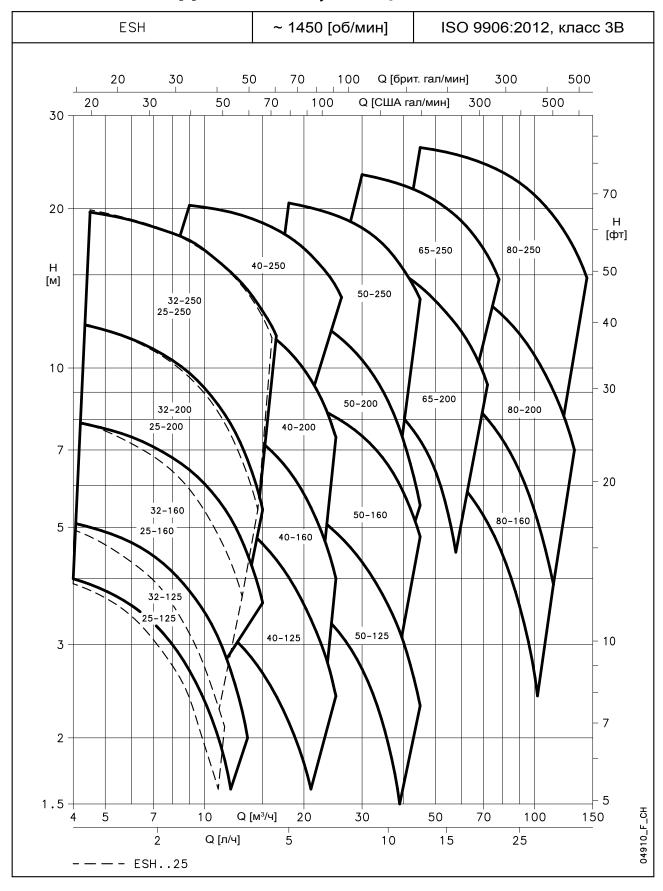
(1) Внешний диаметр полного рабочего колеса (2) Гидравлический КПД насоса (3) Внешний диаметр подогнанного рабочего колеса

ESH-25-32-40-50_2p50-en_a_th

СЕРИЯ ESH 65, 80 ТАБЛИЦА ГИДРАВЛИЧЕСКИХ ХАРАКТЕРИСТИК, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 Гц

тип										Q=	: ПОДАЧ	łΑ					
HACOCA		ØF	ηp %	ØT	л/с 0	13	14,77	16,96	19,15	21,34	23,53	25,72	27,91	30,1	32,29	34,477	37
	P_N				м³/ч 0	45	53	61	69	77	85	93	100	108	116	124	132
	кВт	(1)	(2)	(3)			,	н = по	олный	НАПОР	, METPO	в вод	яного	столь	A		
65-160/40	4		72,1	127	21,1		17,2	15,7	14,1	12,3	10,6	8,7					
65-160/55	5,5		73,9	140	25,8		22,5	21,1	19,5	17,8	16,1	14,2	12,3	10,3			
65-160/75	7,5		75,7	154	31,5		28,8	27,5	26,0	24,4	22,6	20,8	18,9	16,9	14,9		
65-160/92	9,2		73,0	164	36,3		33,8	32,2	30,3	28,2	25,9	23,6	21,4	19,4	17,7		
65-160/110A	11		73,0	164	36,3		33,8	32,2	30,3	28,2	25,9	23,6	21,4	19,4	17,7		
65-160/110	11	176	74,4		42,1		40,1	38,7	37,0	35,0	32,8	30,5	28,1				
65-200/150	15		71,7	192	52,4	50,3	49,2	47,9	46,2	44,3	42,1	39,6	36,8				
65-200/185	18,5		72,8	203	59,3		56,4	55,2	53,7	51,9	49,9	47,6	45,0	42,2			
65-200/220	22	215	74,0		31,1		30,3	28,4	25,0	20,2		56,1	53,7	51,1	48,2	45,0	
65-250/300	30		74,5	240	83,7			81,5	80,2	78,6	76,7	74,4	71,9	69,0	65,8	62,3	
65-250/370	37	255	73,5		96,5			94,8	93,3	91,6	89,6	87,3	84,8	82,0	79,0	75,7	72,2

тип										Q:	= ПОДАЧ	-IA					
HACOCA		ØF	ηр %	ØT	л/с 0	20	24,24	28,48	32,73	36,97	41,21	45,45	49,7	53,94	58,18	62,424	67
	P_N				м³/ч 0	72	87	103	118	133	148	164	179	194	209	225	240
	кВт	(1)	(2)	(3)				Н = П	олный	напог	, METP	ов вод	яного	столь	Α		
80-160/110	11		75,0	169	33,0	31,8	30,3	28,4	26,1	23,5	20,7	17,7	14,6	11,5			
80-160/150	15		76,5	177	39,5	38,7	37,2	35,4	33,2	30,7	27,9	24,9	21,7	18,5	15,2		
80-160/185	18,5	186	78,0		46,4	45,6	44,1	42,4	40,3	37,9	35,3	32,4	29,3	26,1	22,6		
80-200/220	22		80,5	198	51,8	51,4	50,0	48,2	46,2	43,8	41,2	38,4	35,4	32,1	28,6		
80-200/300	30		81,0	215	62,3	62,6	61,3	59,7	57,7	55,3	52,6	49,7	46,5	43,1	39,6	36,0	
80-200/370	37	226	81,5		69,8	70,8	69,7	68,2	66,4	64,2	61,7	58,9	55,8	52,5	48,9	45,2	41,3
80-250/450	45		79,5	237	82,2			78,7	76,4	73,7	70,5	66,9	63,0	58,6	53,8		
80-250/550	55		80,0	252	93,9			91,8	89,6	87,1	84,1	80,7	77,0	72,9	68,5		
80-250/750	75	270	78,0		109,6			108,4	106,4	103,9	101,1	97,9	94,3	90,4	86,0	81,2	


Гидравлические характеристики в соответствии с ISO 9906:2012, класс 3B (бывш. ISO 9906:1999, Приложение A)

ESH-65-80_2p50-en_a_th

⁽¹⁾ Внешний диаметр полного рабочего колеса (2) Гидравлический КПД насоса (3) Внешний диаметр подогнанного рабочего колеса

СЕРИЯ ESH ДИАПАЗОН ГИДРАВЛИЧЕСКИХ ХАРАКТЕРИСТИК, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 Гц

СЕРИЯ ESH 25, 32, 40, 50 ТАБЛИЦА ГИДРАВЛИЧЕСКИХ ХАРАКТЕРИСТИК, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 Гц

тип										Q:	= ПОДА	-IA					
HACOCA		ØF	ηр %	ØΤ	л/с 0	1,3	1,6	1,9	2,2	2,5	2,8	3,1	3,4	3,7	4,0	4,3	4,6
	P_N				м³/ч 0	5	6	7	8	9	10	11	12	13	14	15	17
	кВт	(1)	(2)	(3)		,	,	Н = ПО	лный і	НАПОР,	МЕТРО	в водя	ного о	столба			
25-125/02A	0,25		58,5	114	4,0	3,5	3,2	2,9	2,6	2,2	1,7						
25-125/02	0,25	128	60,8		5,2	4,7	4,4	4,1	3,8	3,4	3,0	2,5					
25-160/02A	0,25		57,4	145	6,5	6,0	5,7	5,3	4,8	4,3	3,8	3,2					
25-160/02	0,25	160	59,4		8,0	7,5	7,2	6,9	6,5	6,0	5,5	4,9	4,3				
25-200/03	0,37		50,4	182	10,4	9,4	8,9	8,4	7,8	7,1	6,3	5,5	4,6	3,6			
25-200/05	0,55	199	52,2		12,5	11,6	11,1	10,6	10,0	9,4	8,7	7,9	7,0	6,1	5,1		
25-250/07	0,75		46,8	208	14,4	13,6	13,3	12,9	12,5	11,9	11,3	10,5	9,8	8,9	8,1		
25-250/11	1,1		48,4	228	17,5	16,7	16,4	16,1	15,7	15,1	14,6	13,9	13,2	12,4	11,5	10,7	
25-250/15	1,5	245	49,7		20,4	19,6	19,3	19,0	18,6	18,1	17,6	17,0	16,3	15,5	14,7	13,9	13,0
32-125/02A	0,25		59,9	114	4,0	3,6	3,4	3,1	2,8	2,4	2,0	1,5					
32-125/02	0,25	128	62,3		5,2	4,8	4,6	4,3	4,0	3,6	3,3	2,8	2,4	1,9			
32-160/02A	0,25		58,0	145	6,6	6,0	5,7	5,3	4,8	4,2	3,6	2,9					
32-160/02	0,25	160	60,0		8,1	7,5	7,2	6,9	6,4	5,9	5,4	4,7	4,0	3,3	2,5		
32-200/03	0,37		49,9	182	10,5	9,4	8,9	8,4	7,7	7,0	6,2	5,3	4,3	3,2			
32-200/05	0,55	199	51,6		12,7	11,6	11,2	10,6	10,0	9,3	8,5	7,7	6,8	5,8	4,7		
32-250/07	0,75		44,0	208	14,2	13,5	13,2	12,8	12,3	11,7	11,0	10,2	9,3	8,3	7,1		
32-250/11	1,1		45,6	228	17,4	16,6	16,3	15,9	15,5	14,9	14,3	13,6	12,8	11,9	10,9	9,8	
32-250/15	1,5	245	46,9		20,3	19,5	19,2	18,9	18,4	17,9	17,3	16,7	15,9	15,1	14,2	13,2	12,2

тип										Q=	= ПОДА	4A						
HACOCA		ØF	ηр %	ØT	л/с 0	2,5	2,9	3,4	3,8	4,2	4,6	5,1	5,5	5,9	6,4	6,8	7,2	
	P _N				м³/ч 0	9	11	12	14	15	17	18	20	21	23	24	26	
	кВт	(1)	(2)	(3)		Н = ПОЛНЫЙ НАПОР, МЕТРОВ ВОДЯНОГО СТОЛБА												
40-125/02A	0,25		66,2	122	4,5	3,7	3,4	3,2	2,9	2,6	2,2							
40-125/02	0,25	135	68,2		5,6	4,8	4,5	4,3	4,0	3,7	3,4	3,0	2,7	2,3	2,0			
40-160/03	0,37		67,6	159	8,0	7,2	6,9	6,6	6,3	5,9	5,5	5,0	4,6	4,1	3,5			
40-160/05	0,55	171	66,5		9,2	8,5	8,2	7,9	7,6	7,2	6,8	6,3	5,8	5,3	4,8	4,2		
40-200/07	0,75		64,3	190	11,9	11,2	10,9	10,5	10,1	9,6	9,1	8,5	7,8	7,1	6,4			
40-200/11	1,1	209	62,9		14,2	13,3	13,0	12,6	12,2	11,8	11,2	10,7	10,0	9,3	8,6	7,7		
40-250/11	1,1		55,8	218	15,6	14,6	14,3	13,9	13,5	13,0	12,4	11,7	11,0	10,1				
40-250/15	1,5		57,0	233	18,1	17,0	16,7	16,3	15,9	15,5	14,9	14,3	13,7	12,9	12,1			
40-250/22	2,2	251	58,1		21,5	20,4	20,0	19,6	19,2	18,7	18,2	17,6	16,9	16,2	15,4	14,6	13,6	

тип					Q = ПОДАЧА												
HACOCA		ØF	ηр %	ØΤ	л/с 0	5	6	6,364	7,045	7,727	8,409	9,091	9,773	10,45	11,14	11,818	12,5
	P_N				м³/ч 0	18	20	23	25	28	30	33	35	38	40	43	45
	кВт	(1)	(2)	(3)	Н = ПОЛНЫЙ НАПОР, МЕТРОВ ВОДЯНОГО СТОЛБА												
50-125/02	0,25		71,5	114	4,1	3,4	3,1	2,9	2,6	2,3	2,0	1,7	1,3	0,9			
50-125/03	0,37		73,2	125	5,0	4,3	4,1	3,9	3,6	3,3	3,0	2,7	2,3	2,0	1,6		
50-125/05	0,55	137	75,1		6,0	5,4	5,2	5,0	4,8	4,5	4,2	3,9	3,6	3,2	2,9	2,5	2,1
50-160/07	0,75		71,3	158	8,2	7,3	7,1	6,8	6,5	6,2	5,8	5,5	5,1	4,6	4,2		
50-160/11	1,1	174	73,0		9,8	8,8	8,6	8,3	8,0	7,7	7,4	7,0	6,7	6,3	5,8	5,3	4,8
50-200/11	1,1		69,1	197	12,8	11,2	10,7	10,2	9,7	9,1	8,5	7,8	7,1	6,3	5,5		
50-200/15	1,5	209	70,1		14,7	13,0	12,6	12,1	11,5	10,9	10,3	9,6	8,9	8,1	7,3	6,4	5,5
50-250/22A	2,2		70,0	224	38,5	16,0	37,9	37,3	36,4	35,2	33,6	31,6	29,3	26,5	23,5		
50/250/22	2,2		69,0	237	19,4	17,8	17,4	17,0	16,5	16,0	15,4	14,8	14,0	13,2	12,3	11,3	
50-250/30	3	250	67,9		21,9	20,6	20,2	19,8	19,4	18,8	18,3	17,6	17,0	16,2	15,4	14,5	13,5

Гидравлические характеристики в соответствии с ISO 9906:2012, класс 3B (бывш. ISO 9906:1999, Приложение A)

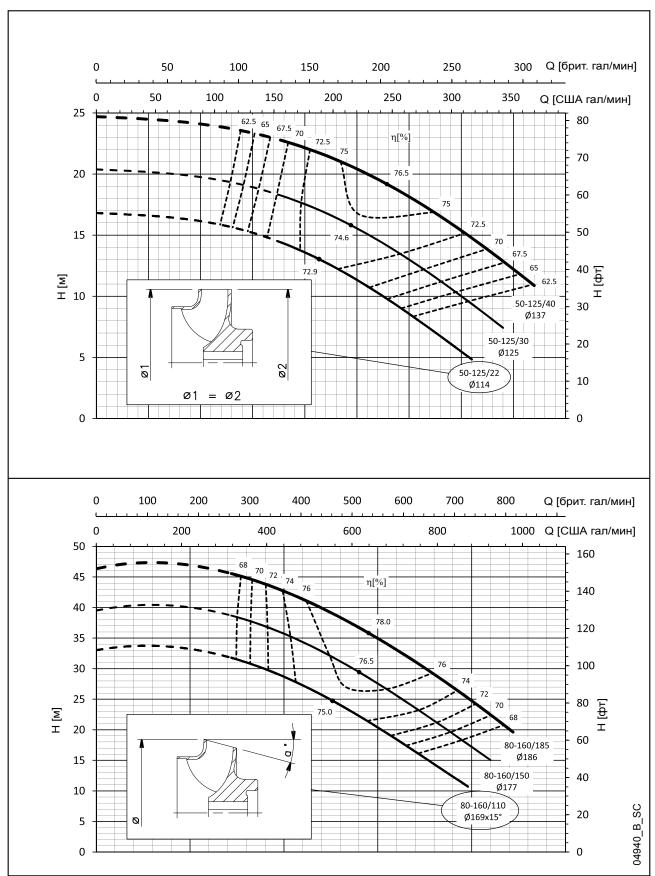
(1) Внешний диаметр полного рабочего колеса (2) Гидравлический КПД насоса (3) Внешний диаметр подогнанного рабочего колеса

ESH-25-32-40-50_4p50-en_a_th

СЕРИЯ ESH 65, 80 ТАБЛИЦА ГИДРАВЛИЧЕСКИХ ХАРАКТЕРИСТИК, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 Гц

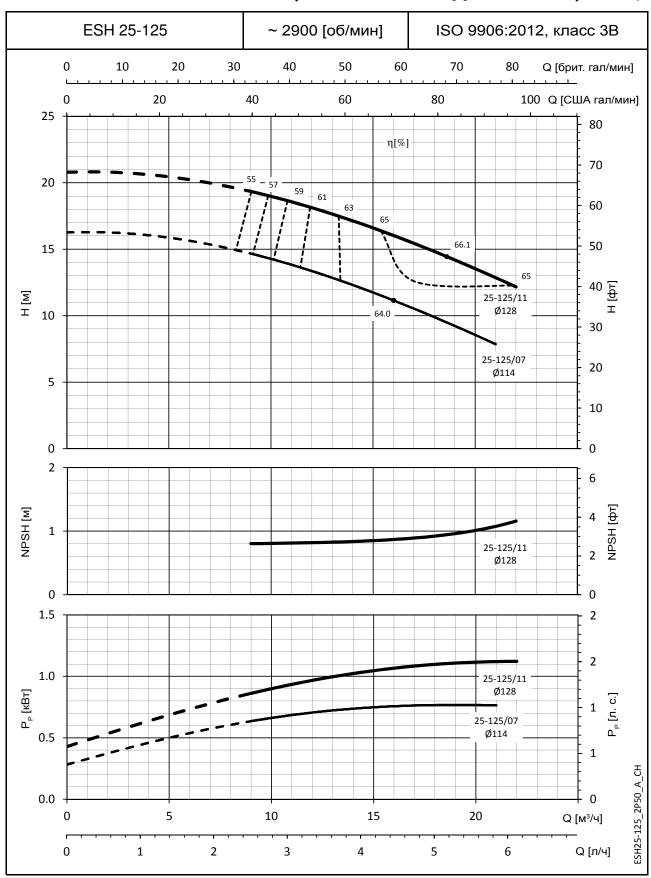
тип					Q = ПОДАЧА													
HACOCA		ØF	ηp %	ØT	л/с 0	8	8,788	10,08	11,36	12,65	13,94	15,23	16,52	17,8	19,09	20,379	22	
	P_N				м³/ч 0	27	32	36	41	46	50	55	59	64	69	73	78	
	кВт	(1)	(2)	(3)	Н = ПОЛНЫЙ НАПОР, МЕТРОВ ВОДЯНОГО СТОЛБА													
65-200/15	1,5		68,2	176	10,7	9,8	9,3	8,7	8,1	7,3	6,3	5,3	4,0					
65-200/22	2,2		70,2	199	13,8	13,1	12,7	12,2	11,6	11,0	10,2	9,3	8,4	7,3				
65-200/30	3	219	72,0		16,9	16,3	15,9	15,5	15,0	14,4	13,8	13,0	12,1	11,2	10,2			
65-250/40	4		71,9	240	20,4		19,3	18,8	18,3	17,6	16,9	16,1	15,2	14,2	13,0			
65-250/55	5,5	255	71,0		23,7		23,1	22,6	22,0	21,4	20,7	19,9	19,1	18,1	17,1	16,0	14,7	

тип					Q = ПОДАЧА													
HACOCA		ØF	ηр %	ØT	л/с 0	10	12,73	15,45	18,18	20,91	23,64	26,36	29,09	31,82	34,55	37,273	40	
	P_N				м³/ч 0	36	46	56	65	75	85	95	105	115	124	134	144	
	кВт	(1)	(2)	(3)				Н = ПС	олный	НАПОР	, METPO	ов вод	яного	столь	A			
80-160/15	1,5		75,2	169	8,0	7,6	7,0	6,3	5,6	4,8	4,0	3,1						
80-160/22A	2,2		74,2	177	9,4	9,0	8,5	7,8	7,1	6,3	5,4	4,5	3,5					
80-160/22	2,2	186	73,4		10,8	10,4	9,9	9,2	8,5	7,7	6,8	5,9	4,9					
80-200/30	3		80,5	198	12,3		11,9	11,2	10,4	9,5	8,5	7,5	6,4	5,3				
80-200/40	4	220,0	78,3		15,4		15,3	14,7	13,9	13,0	12,1	11,1	10,1	9,0	7,9			
80-250/55	5,5		77,5	237	20,3					19,5	19,2	18,9	18,5	18,1	17,6	17,2	16,6	
80-250/75	7,5		76,7	252	23,1					22,2	21,9	21,6	21,3	20,9	20,5	20,1	19,7	
80-250/110	11	270	74,3		26,6					26,1	25,8	25,5	25,2	24,8	24,5	24,1	23,6	

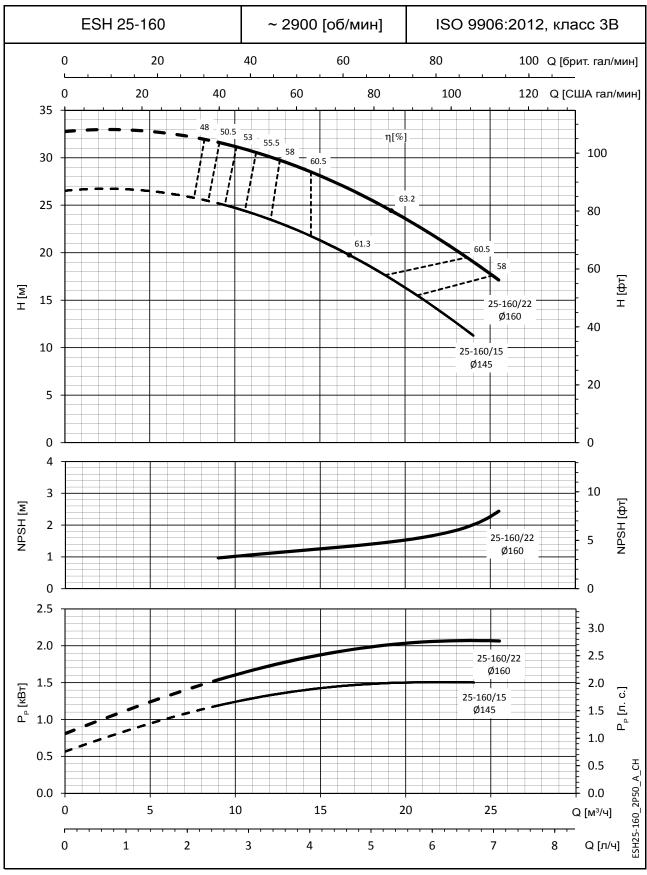

Гидравлические характеристики в соответствии с ISO 9906:2012, класс 3B (бывш. ISO 9906:1999, Приложение A)

ESH-65-80_4p50_a_th

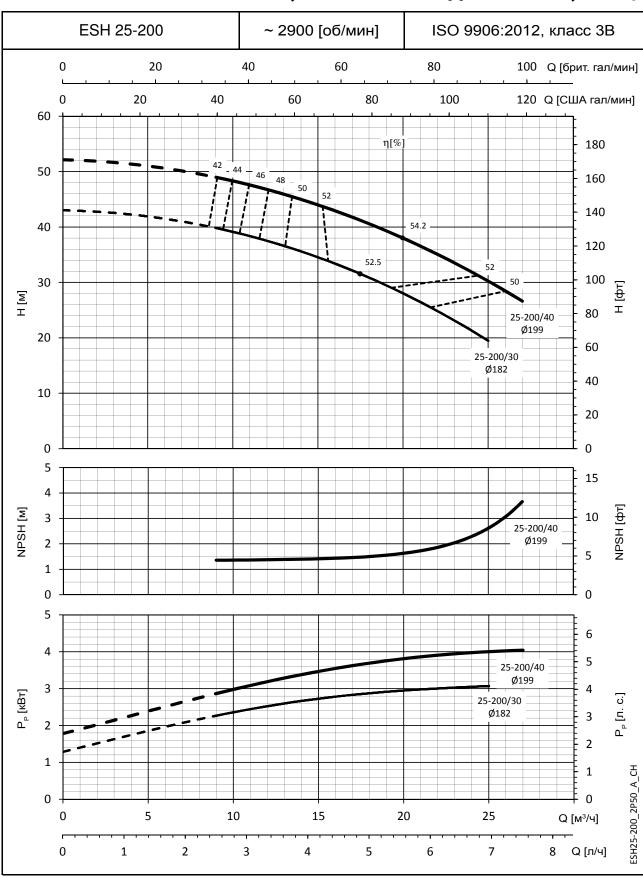
⁽¹⁾ Внешний диаметр полного рабочего колеса (2) Гидравлический КПД насоса (3) Внешний диаметр подогнанного рабочего колеса



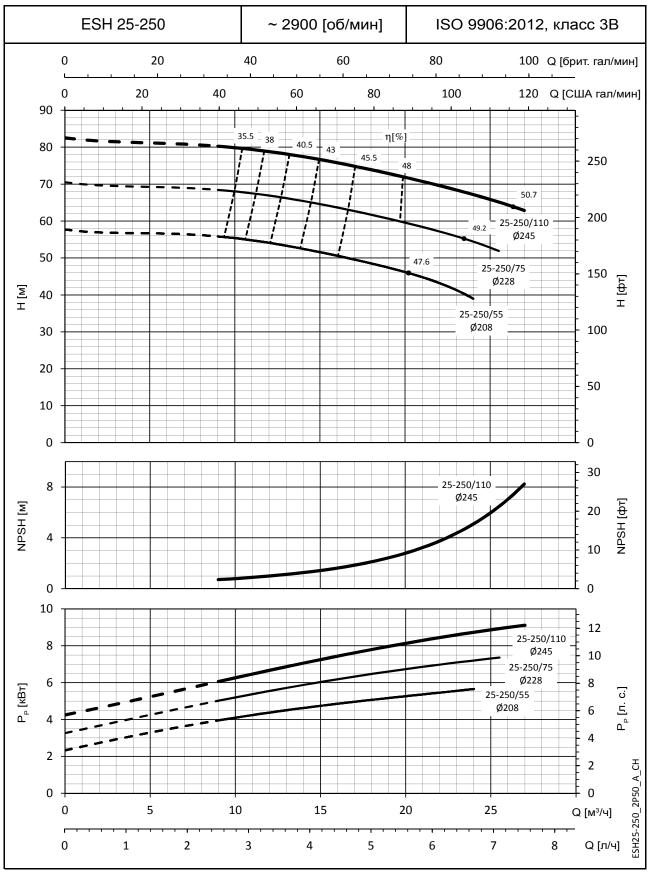
CEPUЯ ESH ОПРЕДЕЛЕНИЕ ТИПА РАБОЧЕГО КОЛЕСА


СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

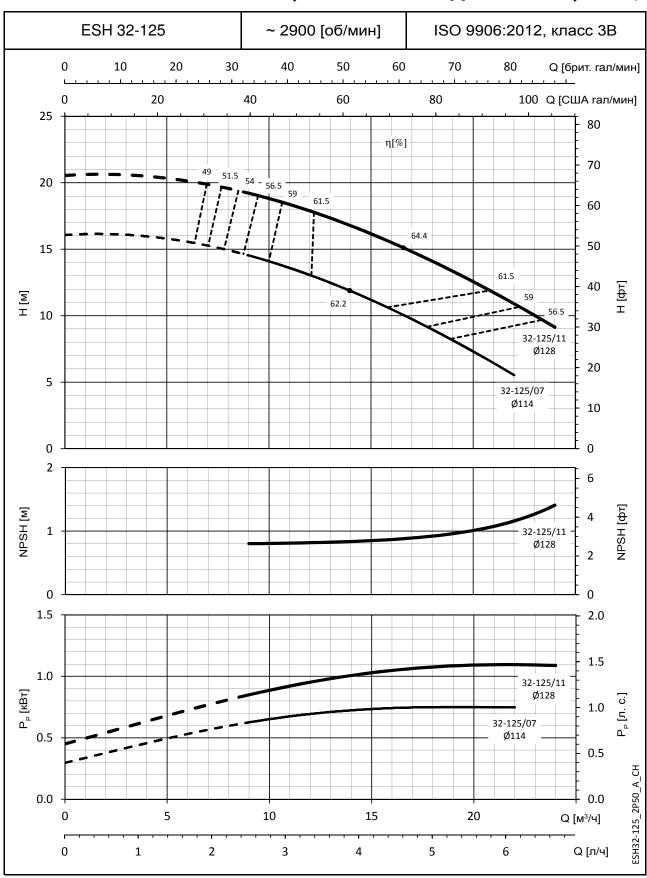
Значения NPSH (полезной высоты всасывания) замерены в лабораторных условиях; для практических нужд рекомендуем увеличить эти значения на 0,5 м. Эти показатели действительны для жидкостей плотностью $\rho = 1,0$ кг/дм 3 с кинематической вязкостью v = 1 мм 2 /с.


СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

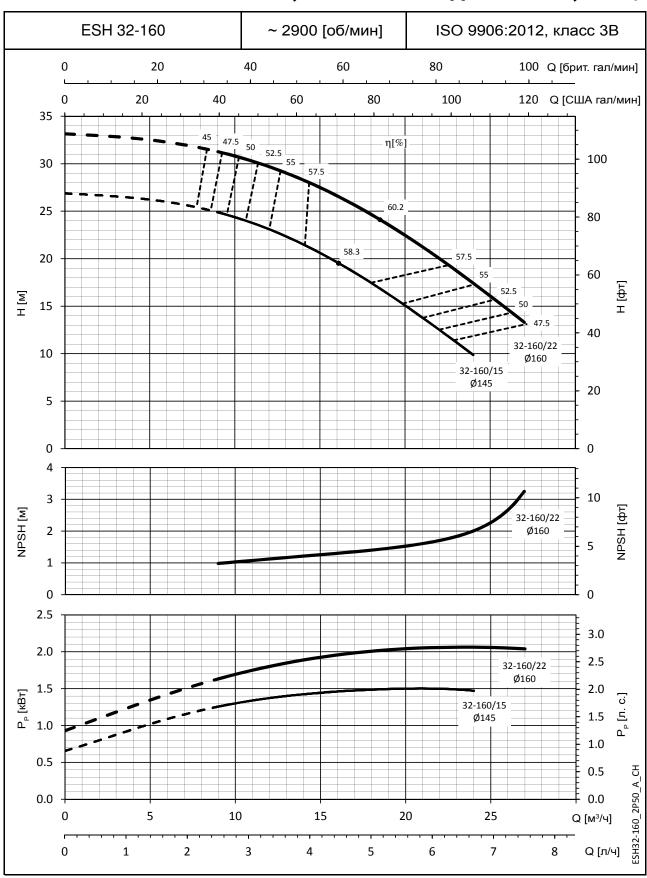
Значения NPSH (полезной высоты всасывания) замерены в лабораторных условиях; для практических нужд рекомендуем увеличить эти значения на 0,5 м. Эти показатели действительны для жидкостей плотностью ρ = 1,0 кг/дм³ с кинематической вязкостью ν = 1 мм²/с.



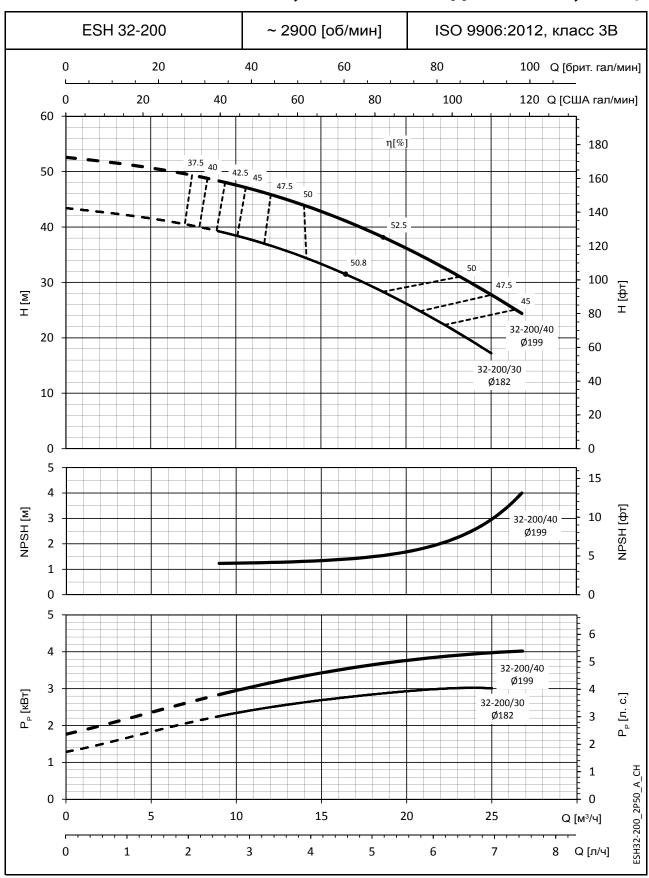
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



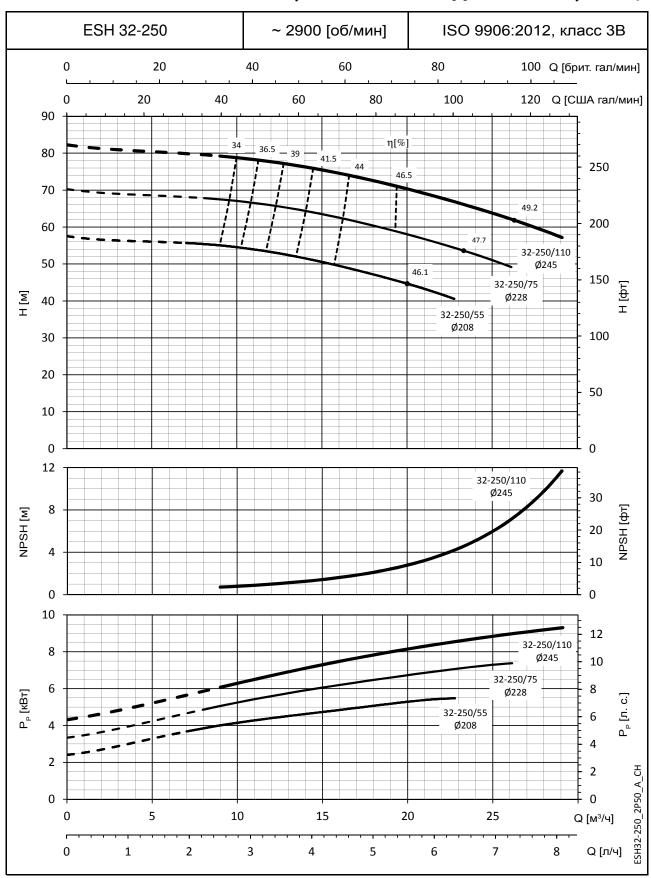
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



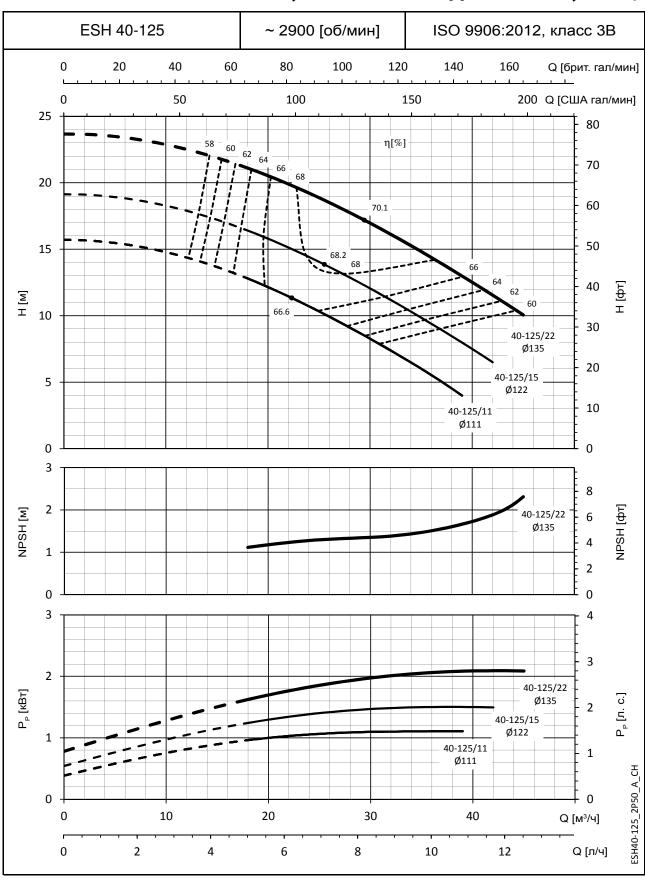
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



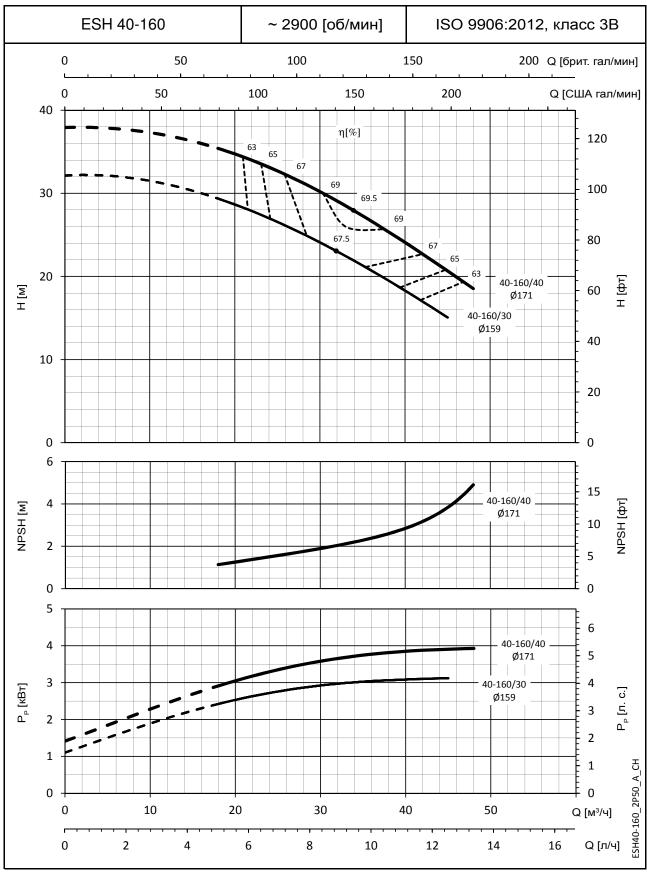
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



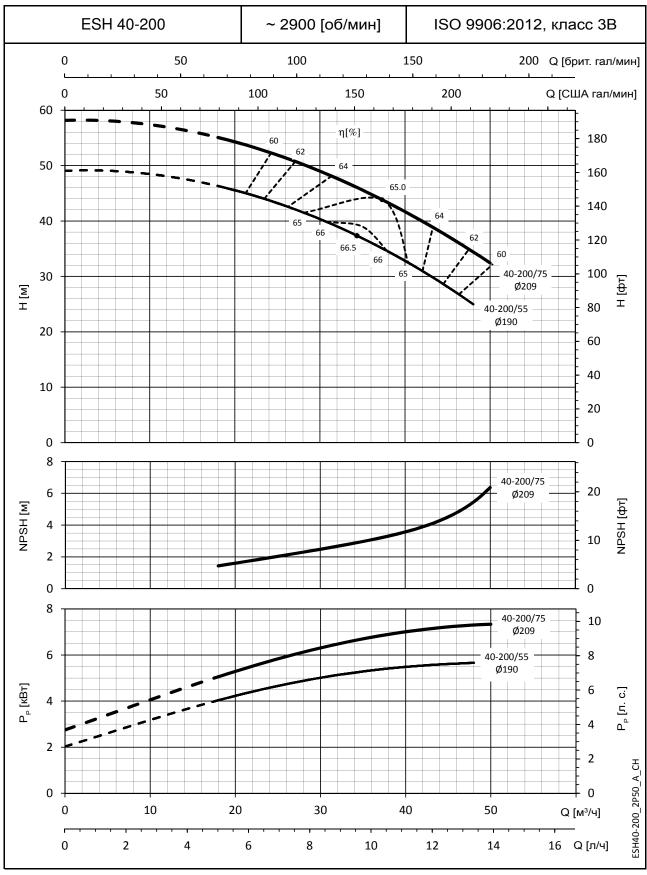
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



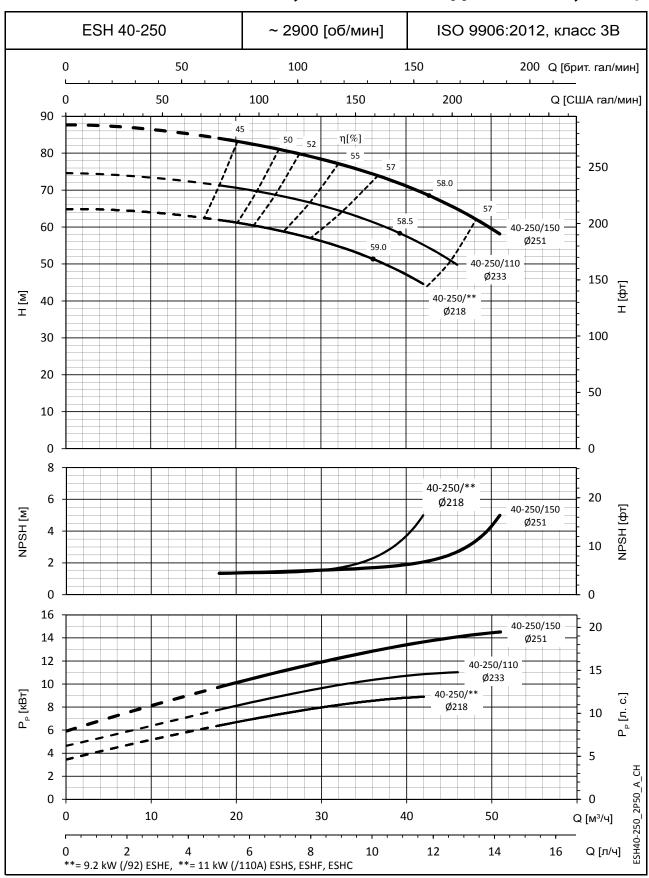
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



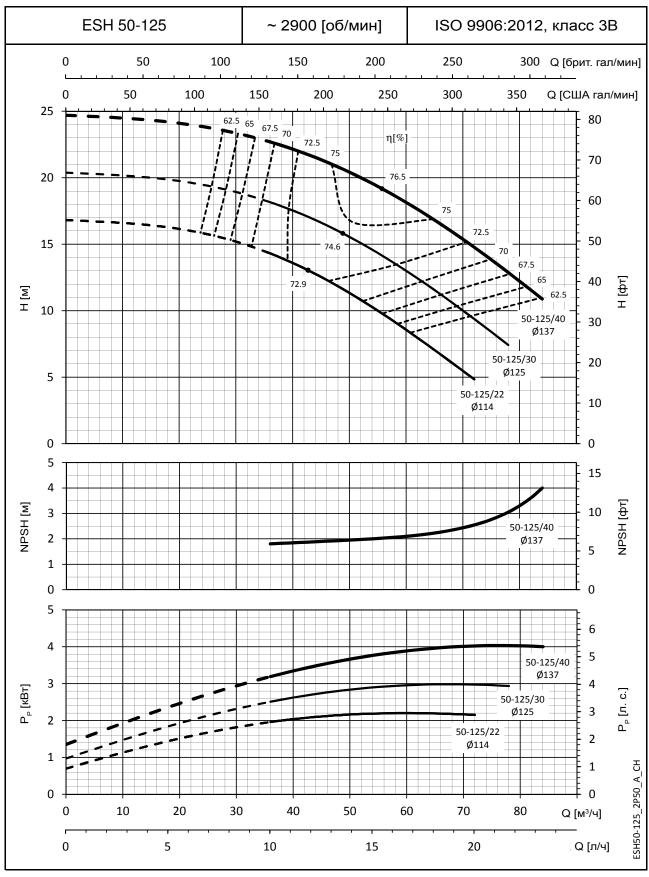
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



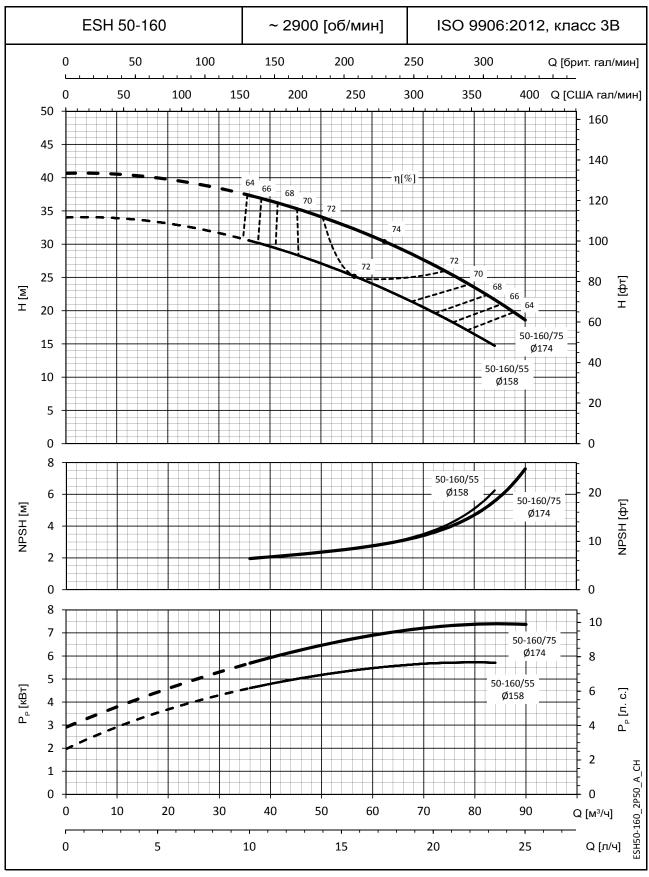
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



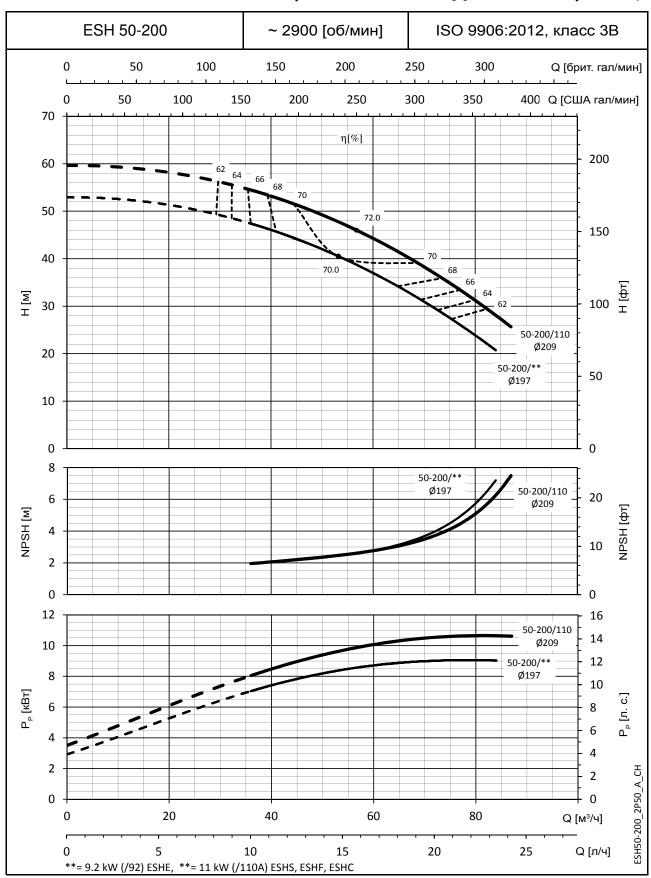
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



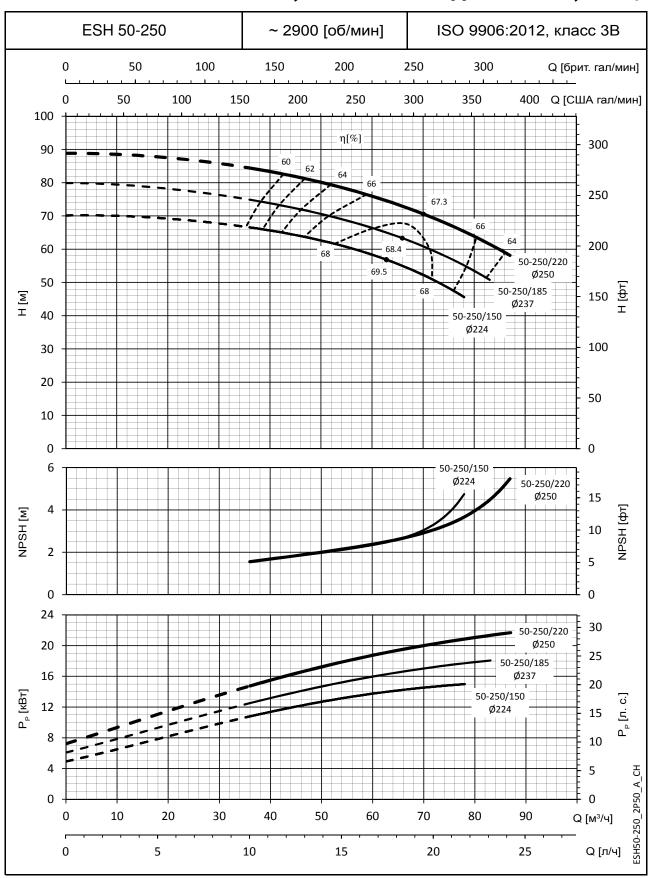
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



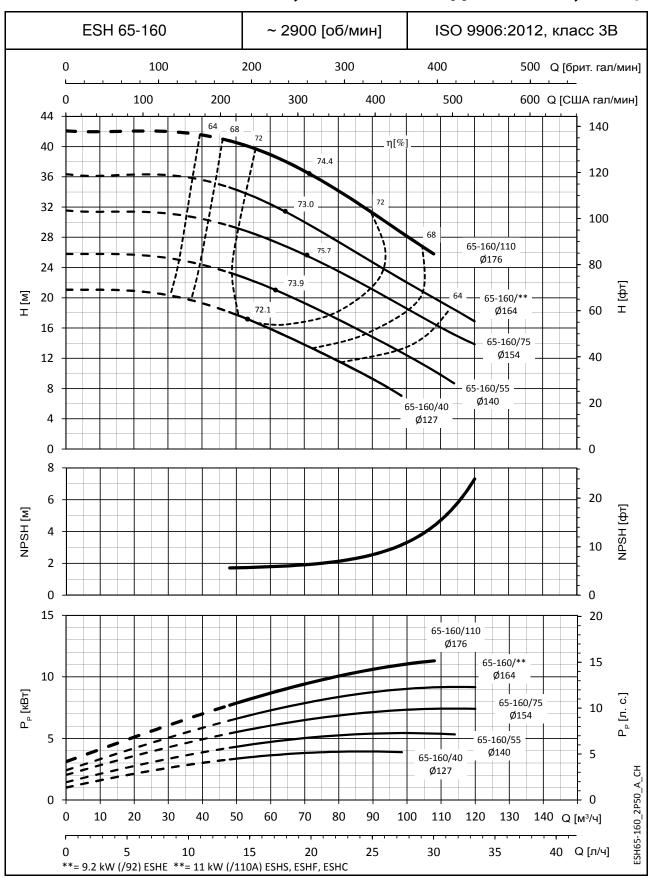
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



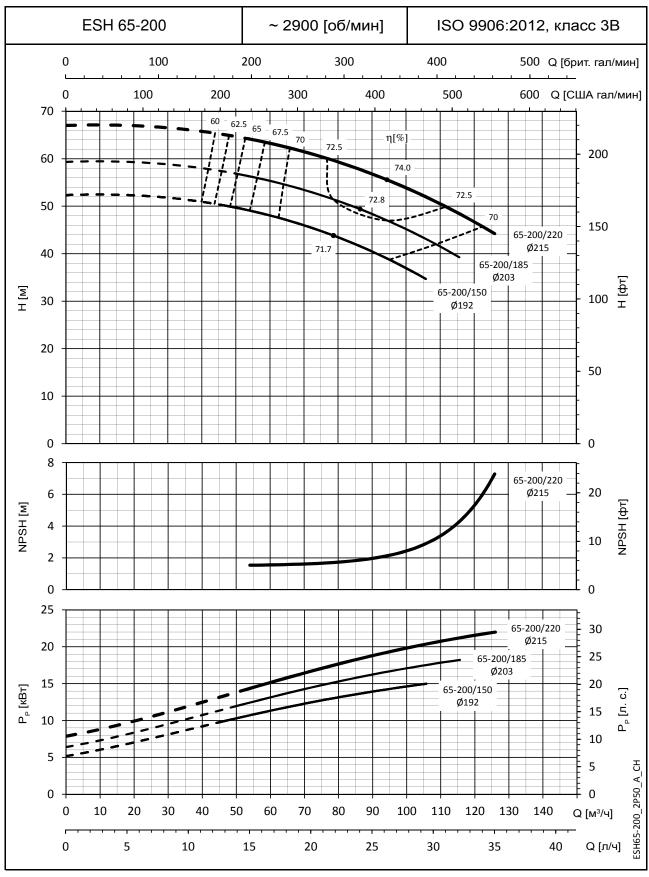
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



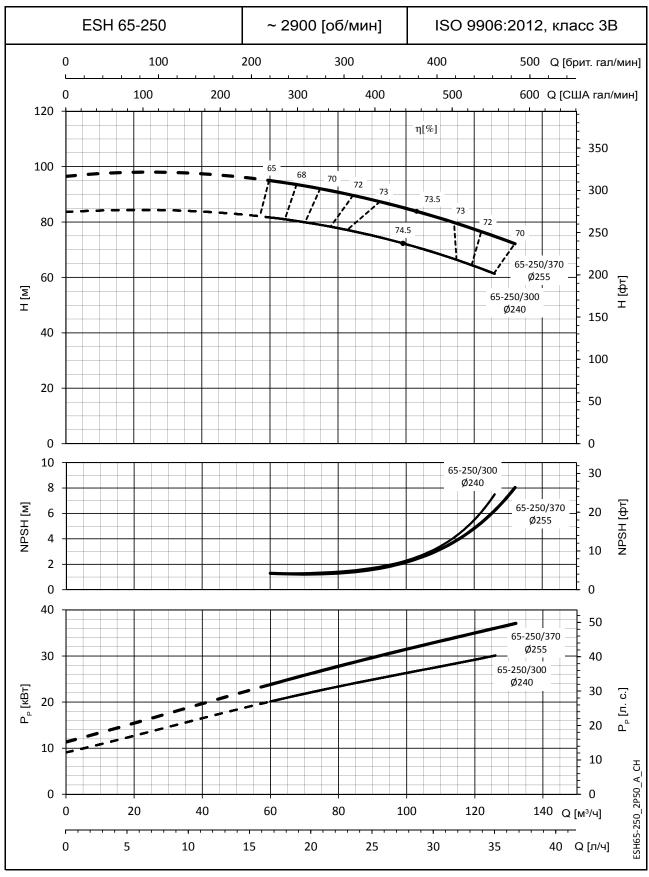
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



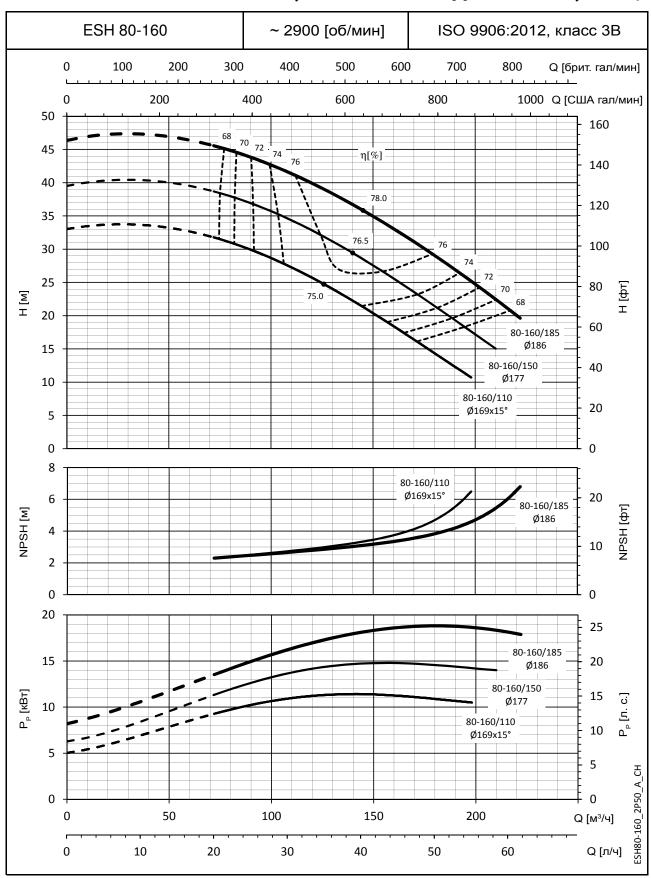
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



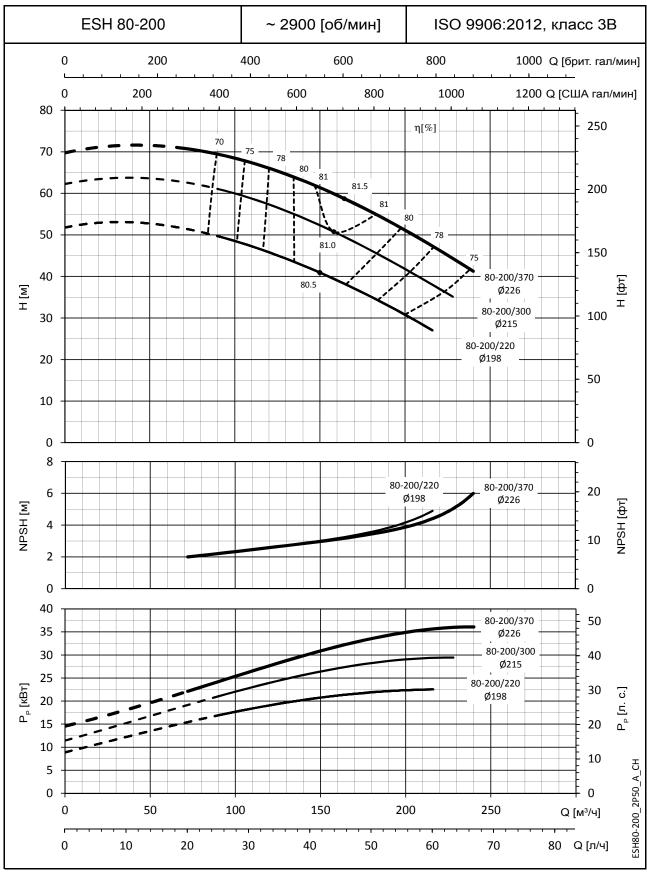
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



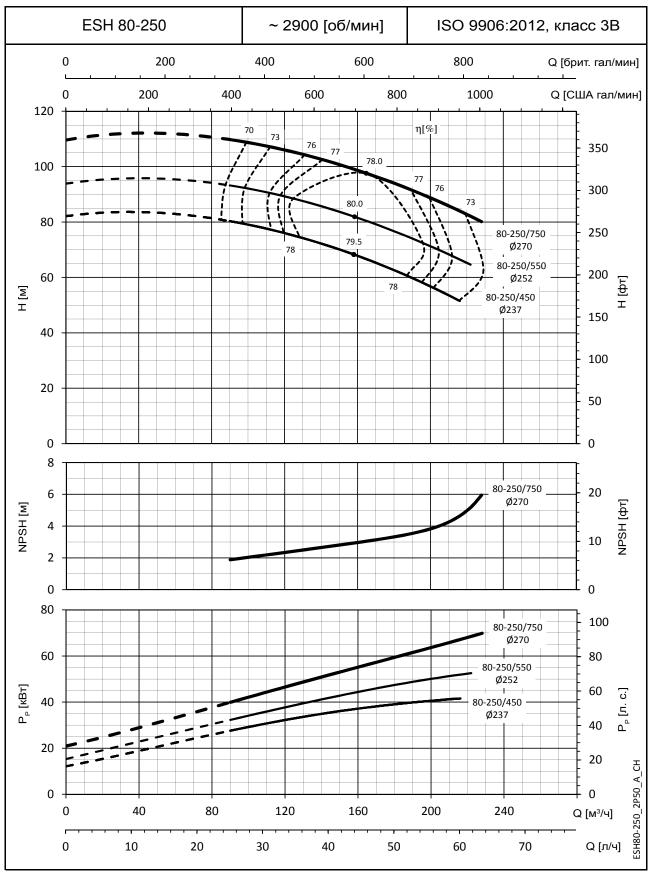
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



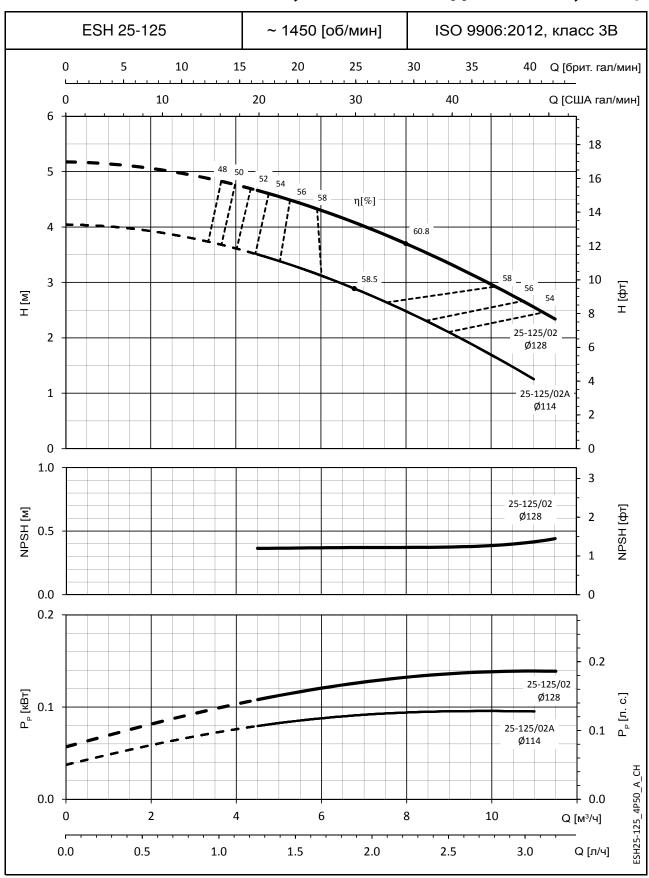
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



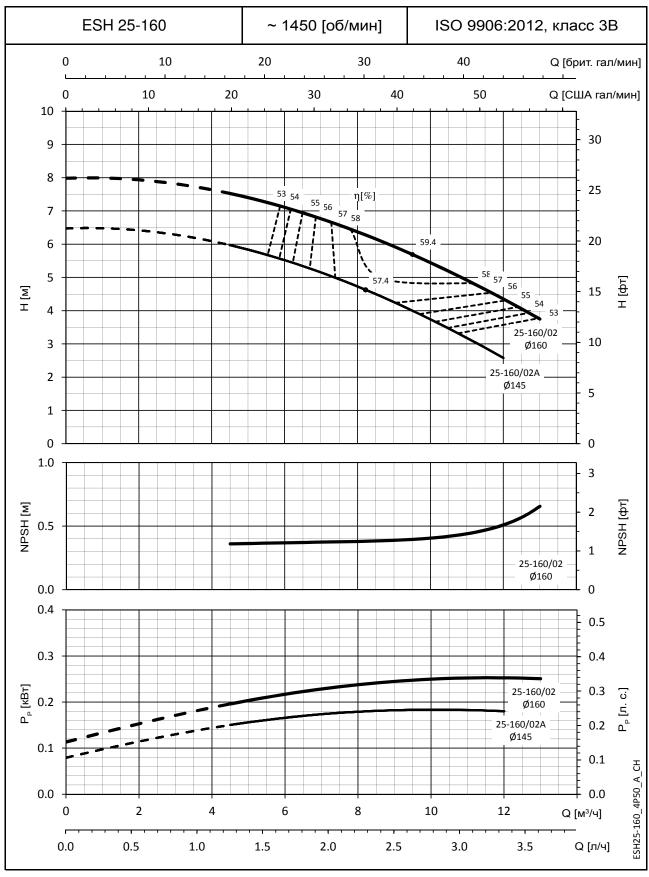
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



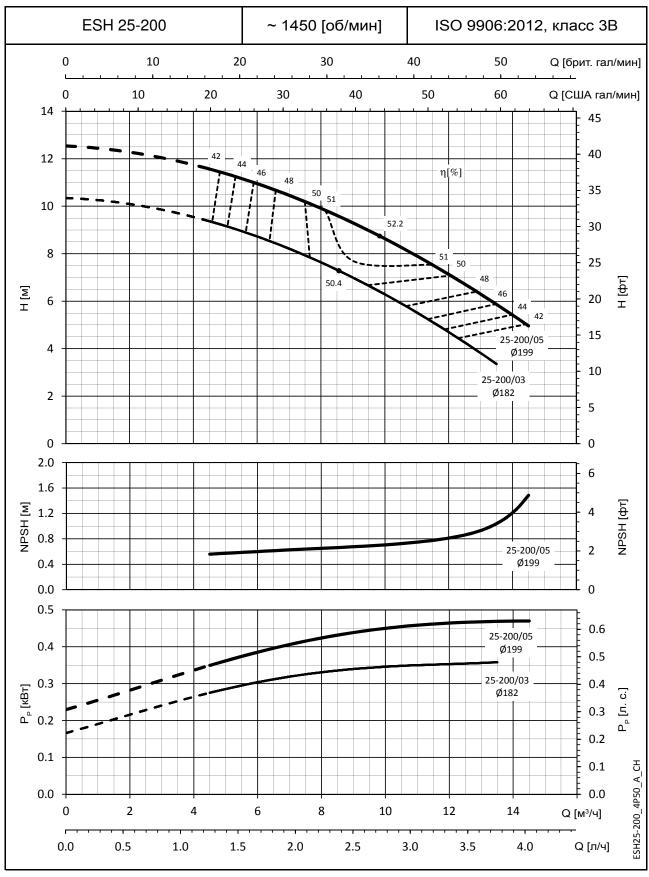
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



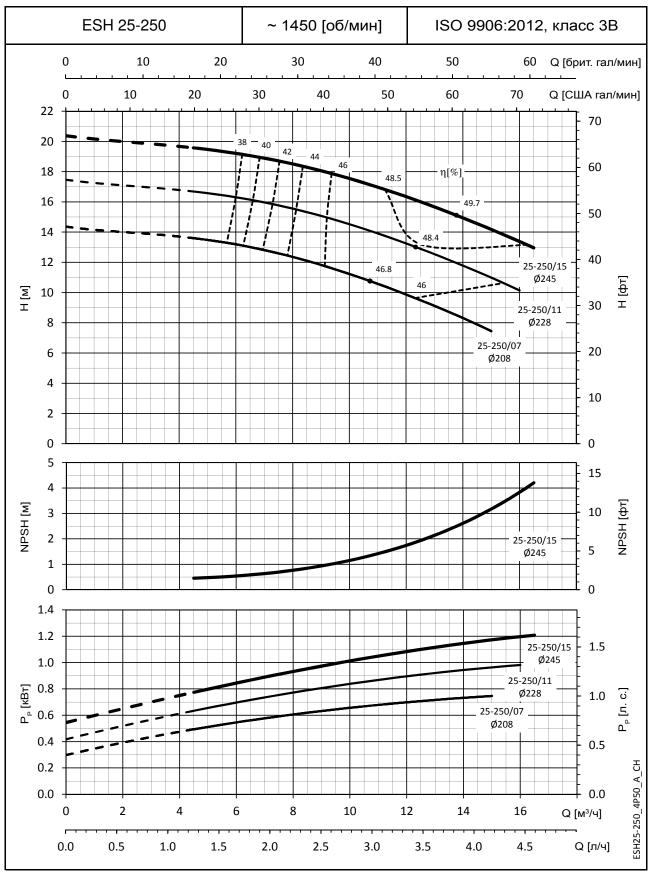
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



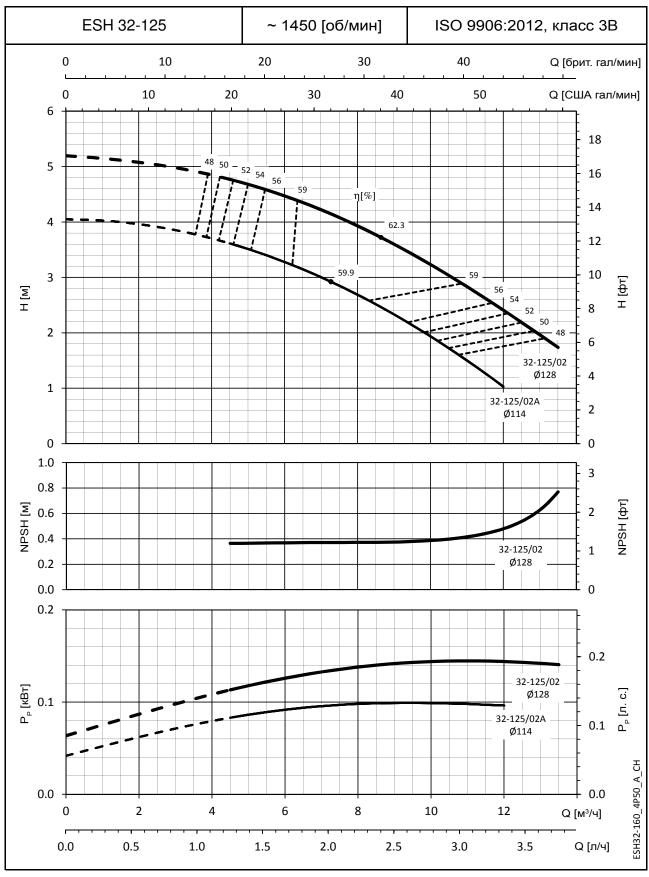
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



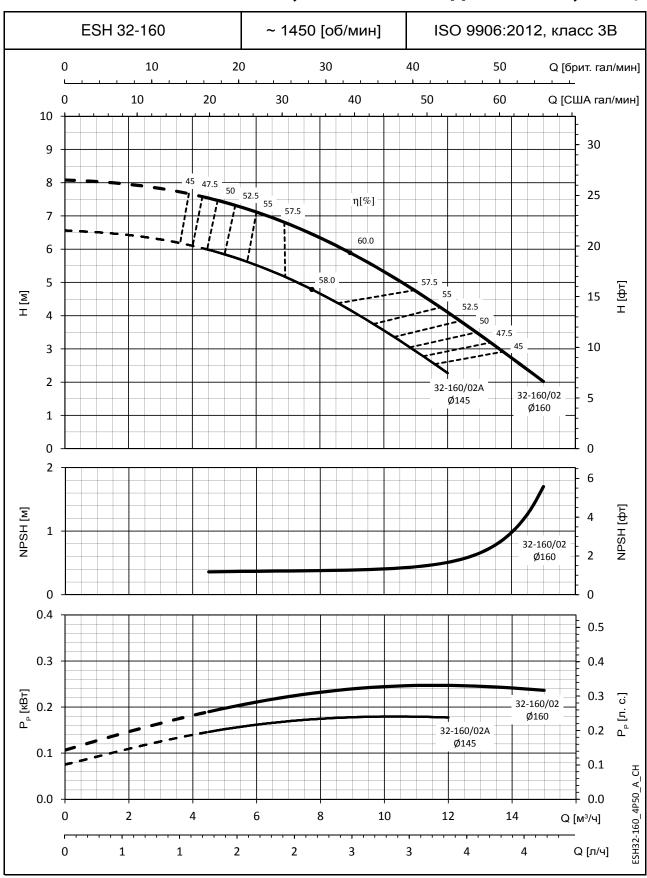
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



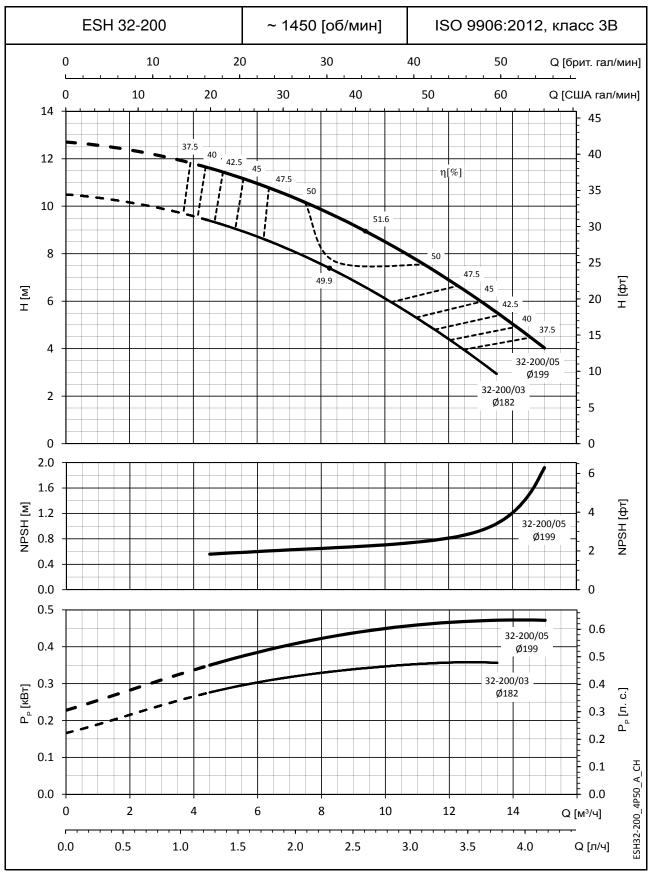
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



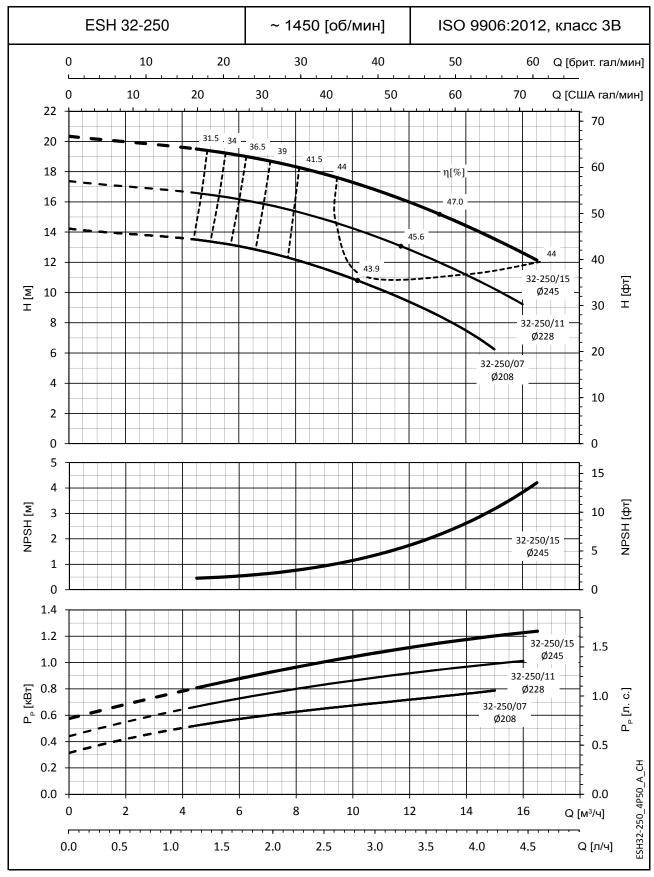
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



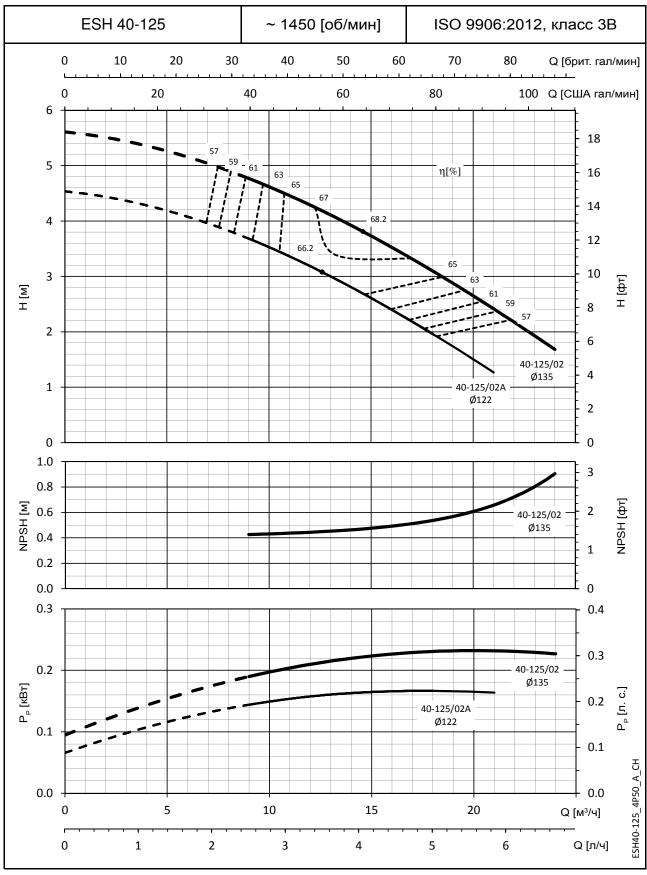
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



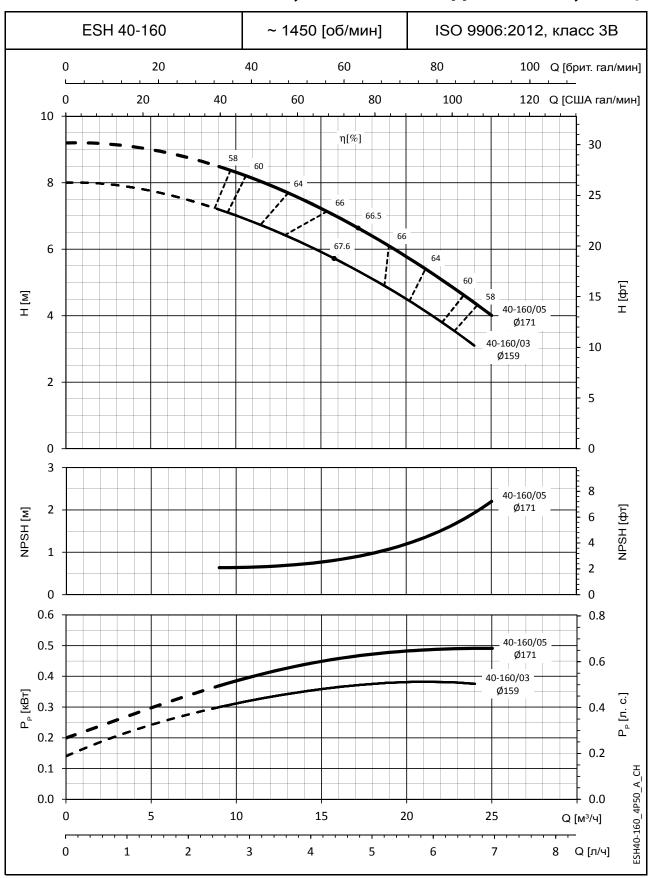
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



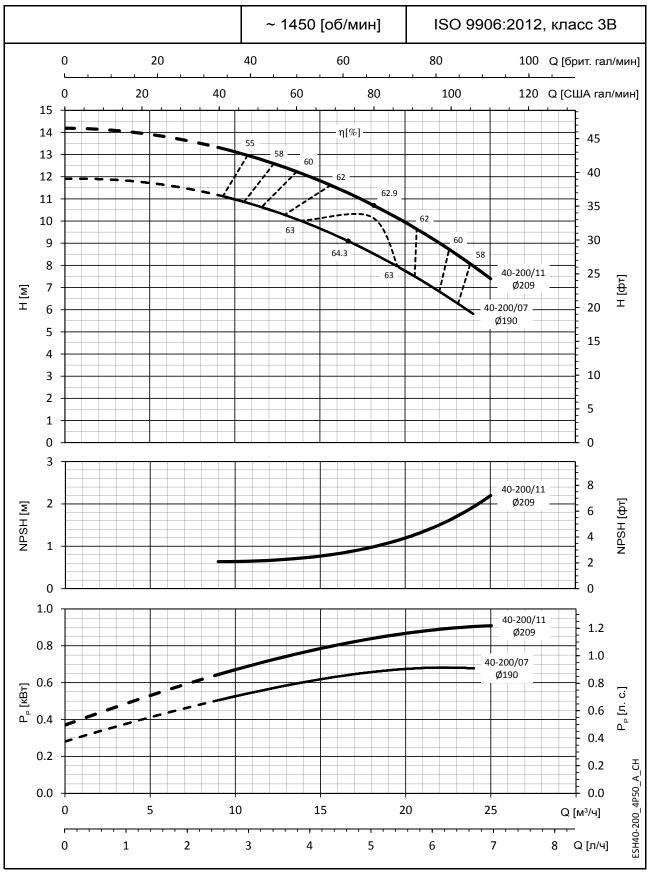
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



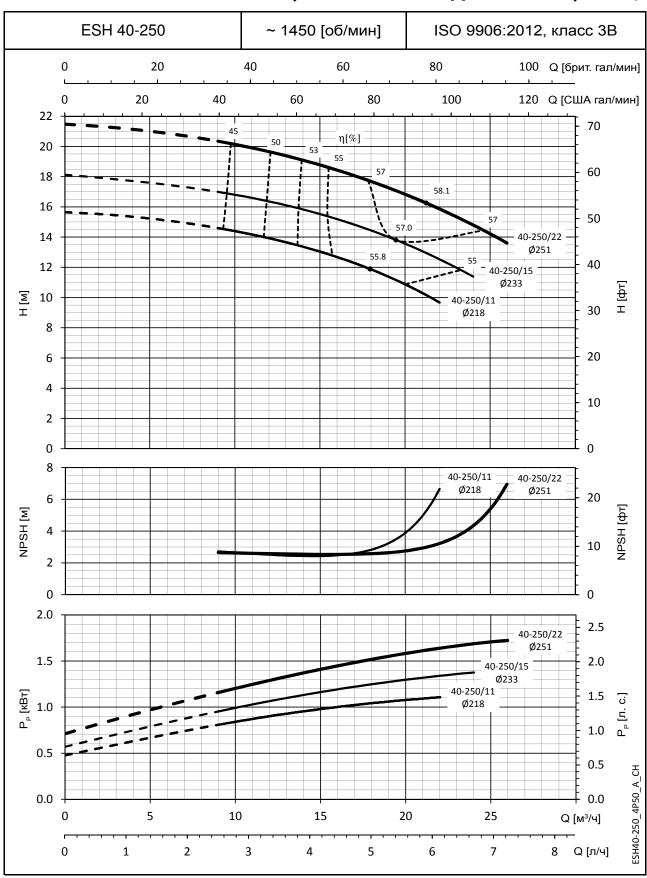
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



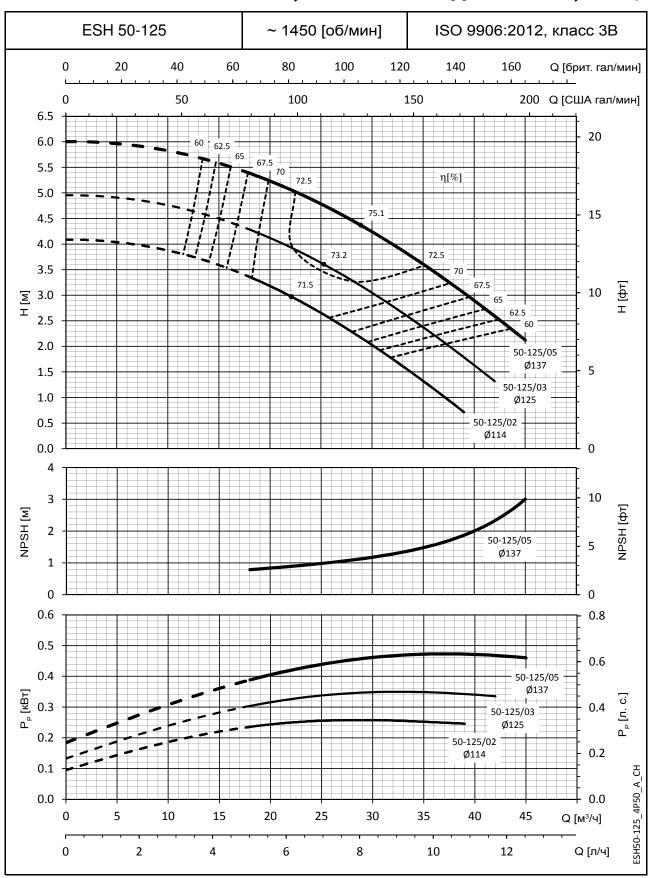
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



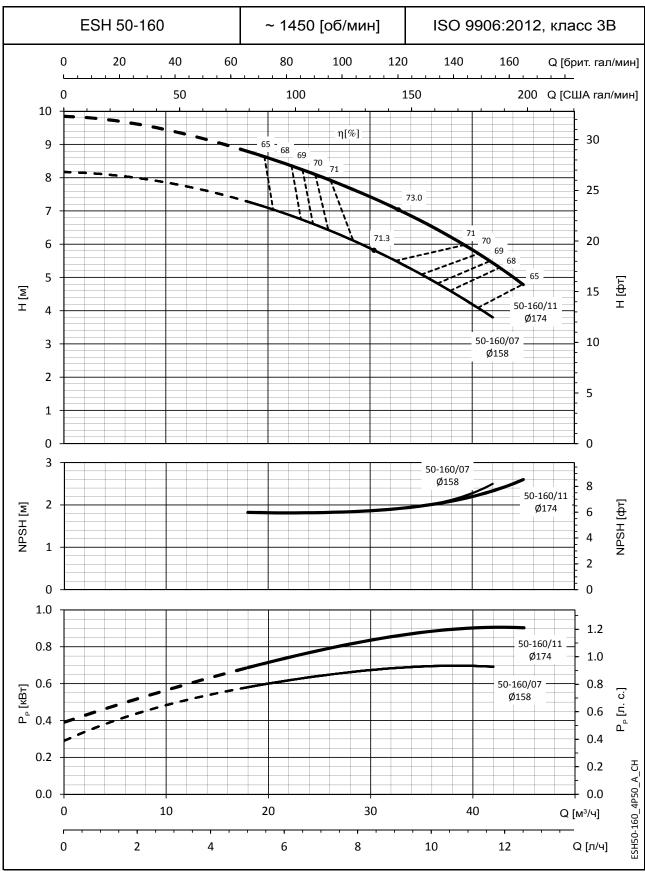
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



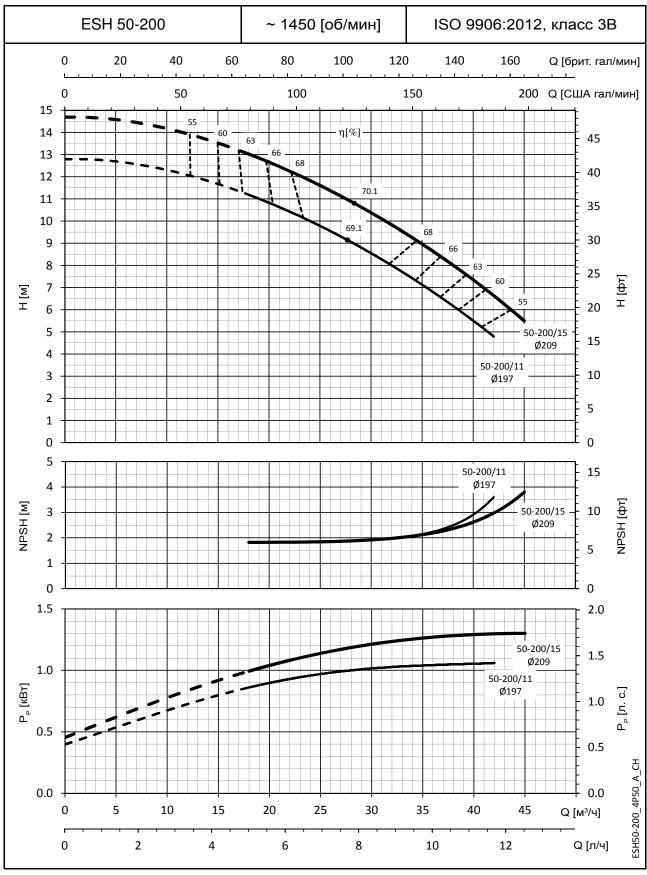
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



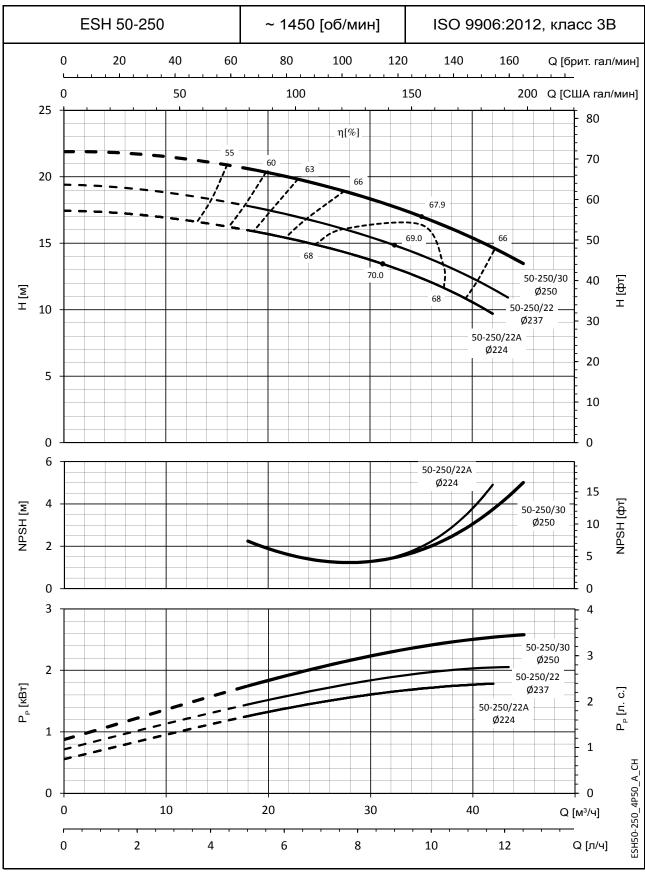
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



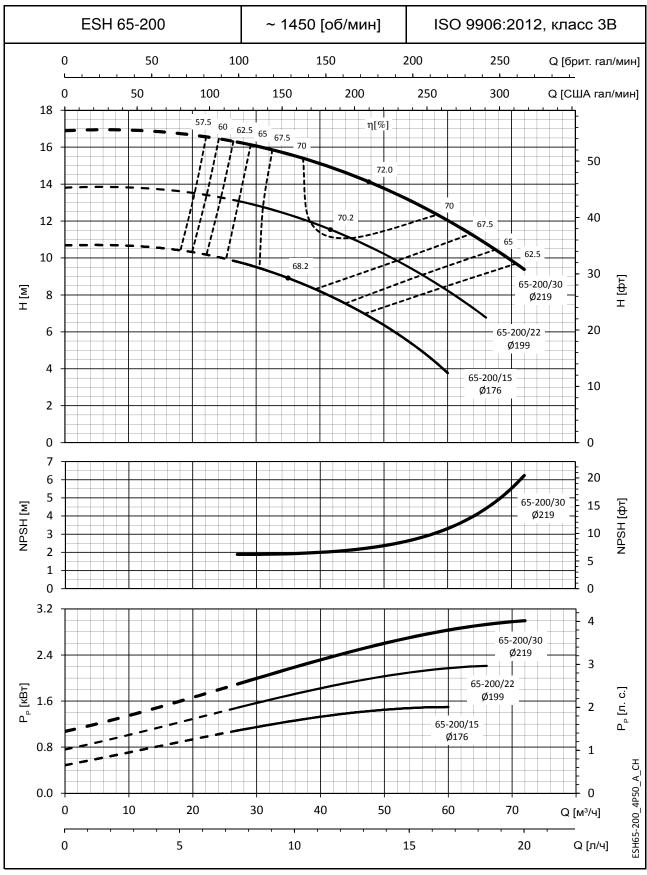
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



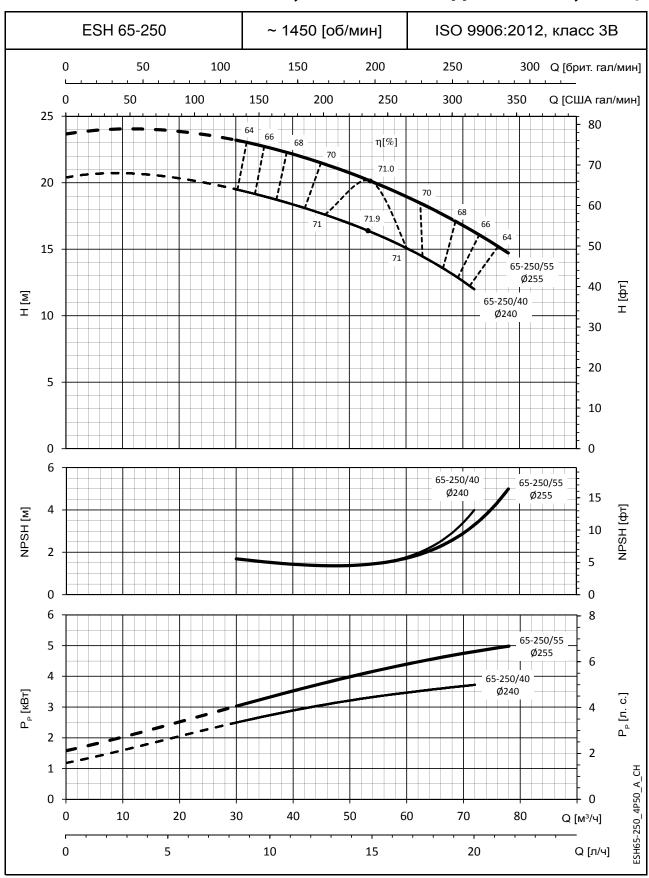
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



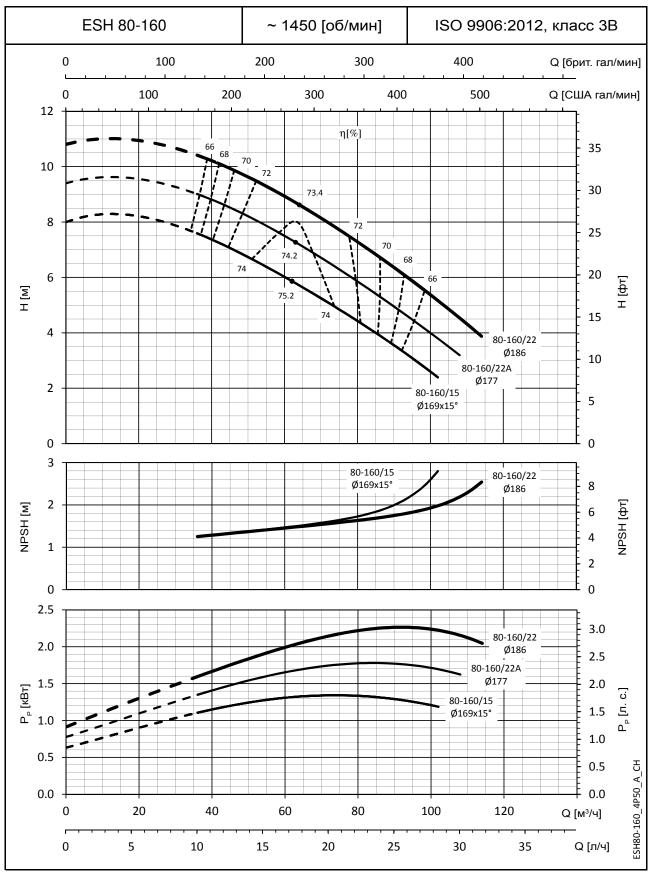
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ



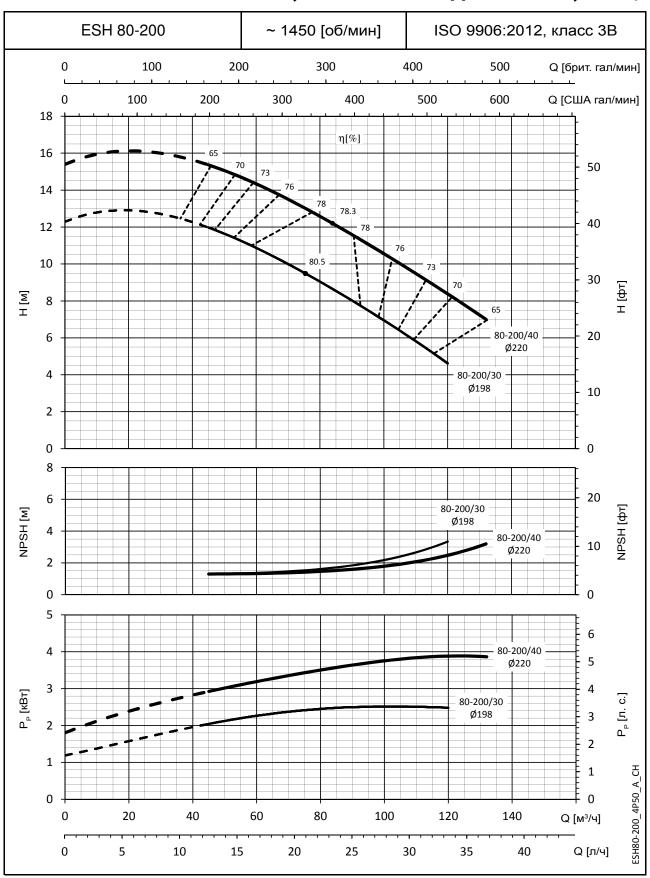
СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ


СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

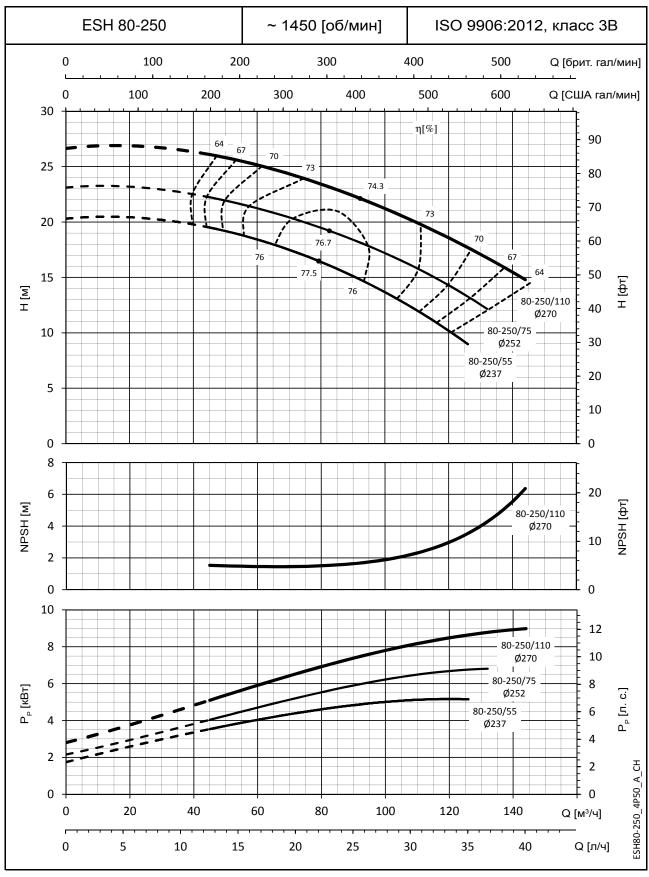
Значения NPSH (полезной высоты всасывания) замерены в лабораторных условиях; для практических нужд рекомендуем увеличить эти значения на 0,5 м. Эти показатели действительны для жидкостей плотностью ρ = 1,0 кг/дм³ с кинематической вязкостью ν = 1 мм²/с.


СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

Значения NPSH (полезной высоты всасывания) замерены в лабораторных условиях; для практических нужд рекомендуем увеличить эти значения на 0.5 м. Эти показатели действительны для жидкостей плотностью $\rho = 1,0 \text{ кг/дм}^3$ с кинематической вязкостью $v = 1 \text{ мм}^2/c$.


СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

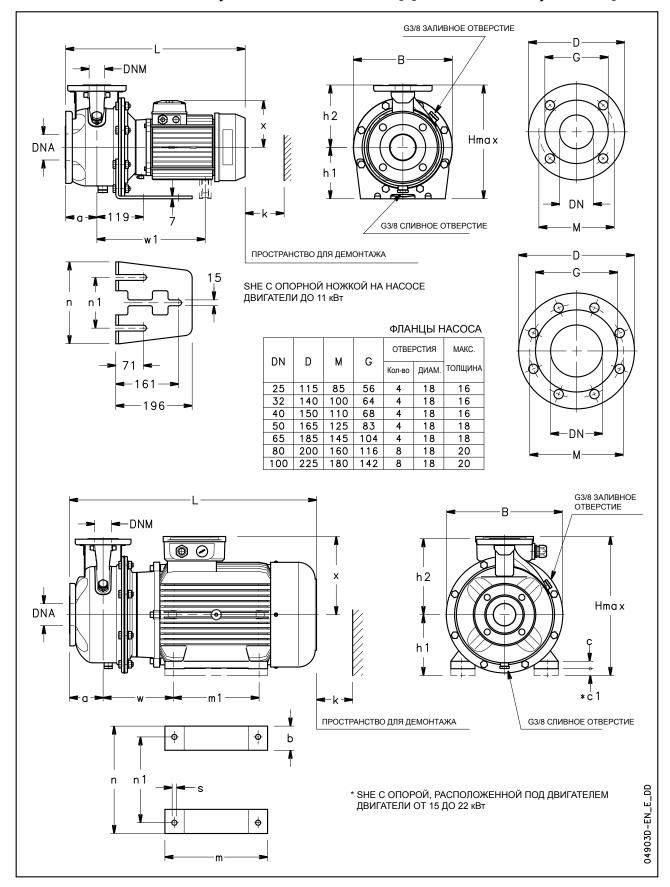
Значения NPSH (полезной высоты всасывания) замерены в лабораторных условиях; для практических нужд рекомендуем увеличить эти значения на 0,5 м. Эти показатели действительны для жидкостей плотностью ρ = 1,0 кг/дм³ с кинематической вязкостью ν = 1 мм²/с.


СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

Значения NPSH (полезной высоты всасывания) замерены в лабораторных условиях; для практических нужд рекомендуем увеличить эти значения на 0.5 м. Эти показатели действительны для жидкостей плотностью $\rho = 1.0 \text{ кг/дм}^3$ с кинематической вязкостью $v = 1 \text{ мм}^2/c$.

СЕРИЯ ESH РАБОЧИЕ ХАРАКТЕРИСТИКИ, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

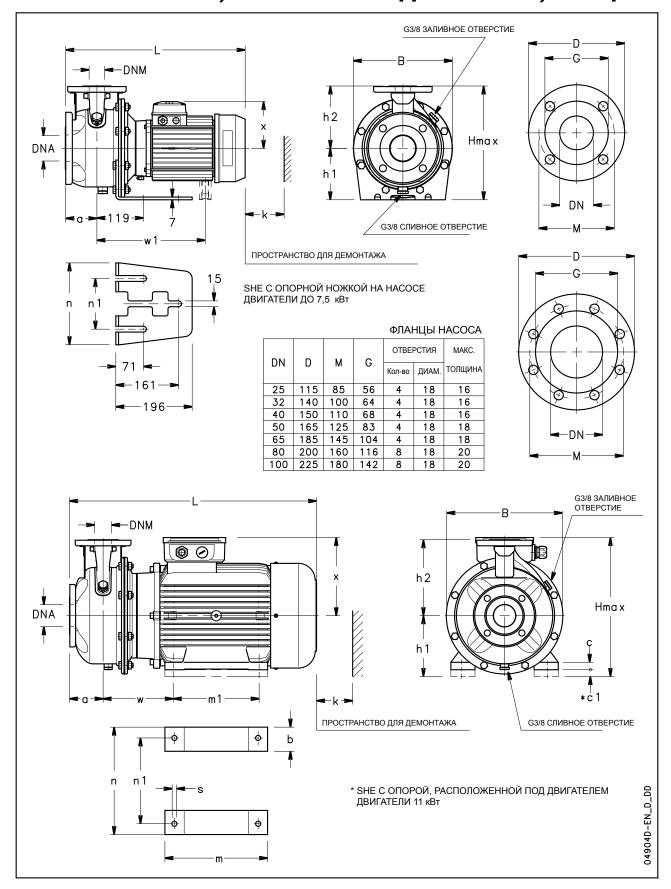
Значения NPSH (полезной высоты всасывания) замерены в лабораторных условиях; для практических нужд рекомендуем увеличить эти значения на 0.5 м. Эти показатели действительны для жидкостей плотностью $\rho = 1.0 \text{ кr/дм}^3$ с кинематической вязкостью $v = 1 \text{ мм}^2/c$.



ГАБАРИТЫ И ВЕС

СЕРИЯ ESHE ГАБАРИТЫ И ВЕС, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

СЕРИЯ ESHE ГАБАРИТЫ И ВЕС, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

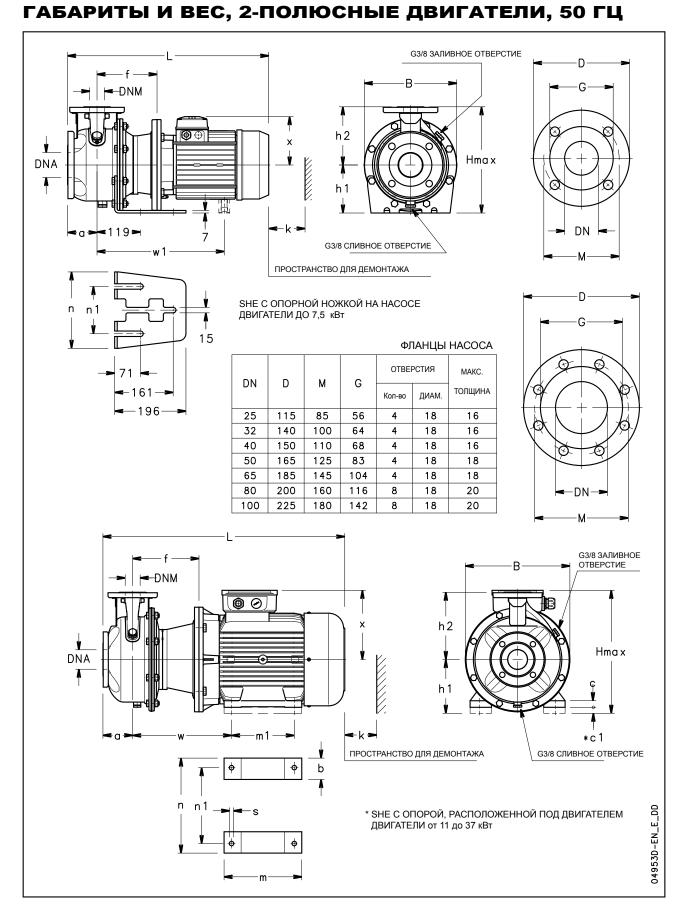

ТИП НАСОСА						Г	АБАРИТ	НЫЕ	PA3N	ІЕРЫ	(мм)										BEC
ESHE2			1	насос								CTA	АНИН				В	н	L	k	
	DNM	DNA	а	h2	w	w1	x	b	c	*c1	h1	m	m1	n	n1	s		max			кг
25-125/07/S	25	50	80	140	-	-	129	-	-	-	160	-	-	190	130	-	218	300	443	98	18,6
25-125/11/S	25	50	80	140	-	-	129	-	-	-	160	-	-	190	130	-	218	300	443	98	20,6
25-160/15/S	25	50	80	160	-	-	129	-	-	_	160	-	-	210	130	-	253	320	443	98	24,4
25-160/22/P	25	50	80	160	-	-	134	-	-	-	160	-	-	210	130	-	253	320	478	98	29
25-200/30/P	25	50	80	180	-	-	134	-	-	_	160	-	-	230	130	-	284	340	478	98	38
25-200/40/P	25	50	80	180	-	-	154	-	-	-	160	-	-	230	130	-	284	340	499	98	41
25-250/55/P	25	50	100	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	553	98	66
25-250/75/P	25	50	100	225	-	305	191	-	-	-	180	-	-	265	130	-	345	405	567	98	84
25-250/110/P	25	50	100	225	-	343	191	-	-	-	180	-	-	265	130	-	345	405	605	98	92
32-125/07/S	32	50	80	140	-	-	129	-	-	-	112	-	-	190	130	-	218	252	443	98	18,6
32-125/11/S	32	50	80	140	-	-	129	-	-	-	112	-	-	190	130	-	218	252	443	98	20,6
32-160/15/S	32	50	80	160	-	-	129	-	-	-	132	-	-	210	130	-	253	292	443	98	24,4
32-160/22/P	32	50	80	160	-	-	134	-	-	-	132	-	-	210	130	1	253	292	478	98	29
32-200/30/P	32	50	80	180	1	-	134	-	-	-	160	-	-	230	130	-	284	340	478	98	38
32-200/40/P	32	50	80	180	-	-	154	-	-	-	160	-	-	230	130	-	284	340	499	98	41
32-250/55/P	32	50	100	225	1	-	168	-	-	-	180	-	-	265	130	-	345	405	553	98	66
32-250/75/P	32	50	100	225	1	305	191	-	-	-	180	-	-	265	130	-	345	405	567	98	84
32-250/110/P	32	50	100	225	1	343	191	-	-	-	180	-	-	265	130	-	345	405	605	98	92
40-125/11/S	40	65	80	140	-	-	129	-	-	-	112	-	-	190	130	-	218	252	443	100	21,6
40-125/15/S	40	65	80	140	-	-	129	-	-	-	112	-	-	190	130	-	218	252	443	100	22,4
40-125/22/P	40	65	80	140	1	1	134	-	-	-	112	-	-	190	130	1	218	252	478	100	30
40-160/30/P	40	65	80	160	-	-	134	-	-	-	132	-	-	210	130	-	253	292	478	100	32
40-160/40/P	40	65	80	160	ı	1	154	-	-	-	132	-	-	210	130	1	253	292	499	100	40
40-200/55/P	40	65	100	180	1	1	168	-	-	-	160	-	-	230	130	1	284	340	553	100	52
40-200/75/P	40	65	100	180	ı	305	191	-	-	-	160	-	-	230	130	1	284	340	567	100	65
40-250/92/P	40	65	100	225	1	343	191	-	-	-	180	-	-	265	130	1	345	405	605	107	89
40-250/110/P	40	65	100	225	ı	343	191	-	-	-	180	-	-	265	130	1	345	405	605	107	94
40-250/150/P	40	65	100	225	208	-	240	49	5	20	180	304	210	304	254	15	345	420	694	107	130
50-125/22/P	50	65	100	160	-	1	134	-	-	-	132	-	-	210	130	-	253	292	498	104	30
50-125/30/P	50	65	100	160	ı	-	134	-	-	-	132	-	-	210	130	1	253	292	498	104	33
50-125/40/P	50	65	100	160	1	-	154	-	-	-	132	-	-	210	130	-	253	292	519	104	40
50-160/55/P	50	65	100	180	-	-	168	-	-	-	160	-	-	210	130	-	253	340	553	104	52
50-160/75/P	50	65	100	180	1	305	191	-	-	-	160	-	-	210	130	-	253	351	567	104	67
50-200/92/P	50	65	100	200	-	343	191	-	-	-	160	-	-	245	130	-	310		605	104	84
50-200/110/P	50	65	100	200	-	343	191	-	-	-	160	-	-	245	130	-	310	360	605	104	88
50-250/150/P	50	65	100	225	208	-	240	49	5	20	180	304	210	304	254	15	345	420	694	107	131
50-250/185/P	50	65	100	225	208	1	240	49	5	20	180	304	254	304	254	15	345	420	694	107	144
50-250/220/P	50	65	100	225	208	-	240	49	5	20	180	304	254	304	254	15	345	420	694	107	147
65-160/40/P	65	80	100	200	-	-	154	-	-	-	160	-	-	245	130	-	310	360	519	130	56
65-160/55/P	65	80	100	200	1	-	168	-	-	-	160	-	-	245	130	-	310	360	553	130	63
65-160/75/P	65	80	100	200	-	305	191	-	-	-	160	-	-	245	130	-	310	360	567	130	80
65-160/92/P	65	80	100	200	-	343	191	-	-	-	160	-	-	245	130	-	310	360	605	130	95
65-160/110/P	65	80	100	200	-	343	191	-	-	-	160	-	-	245	130	-		360	605	130	102
65-200/150/P	65	80	100	225	208	-	240	49	5	20			210		254	15			694	130	131
65-200/185/P	65	80	100	225	208		240	49	5	20			254		254	15		420	694	130	141
65-200/220/P	65	80	100	225	208	-	240	49	5	20	180	304	254	304	254	15	310		694	130	151
80-160/110/P	80	100	125	225	-	343	191	-	-	-	180	-	-	265	130	-	345	405	630	160	94
80-160/150/P	80	100	125	225	208	-	240	49	5	20	180	304	210	304	254	15	345	420	719	160	128
80-160/185/P	80	100	125	225	208	-	240	49	5	20	180	304	254	304	254	15	345	420	719	160	139
80-200/220/P	80	100	125	250	208	-	240	49	5	20	180	304	254	304	254	15	345	430	719	160	156

^{*} Подставка под двигатель по запросу

ESHE_2p50-en_a_td

СЕРИЯ ESHE ГАБАРИТЫ И ВЕС, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

СЕРИЯ ESHE ГАБАРИТЫ И ВЕС, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

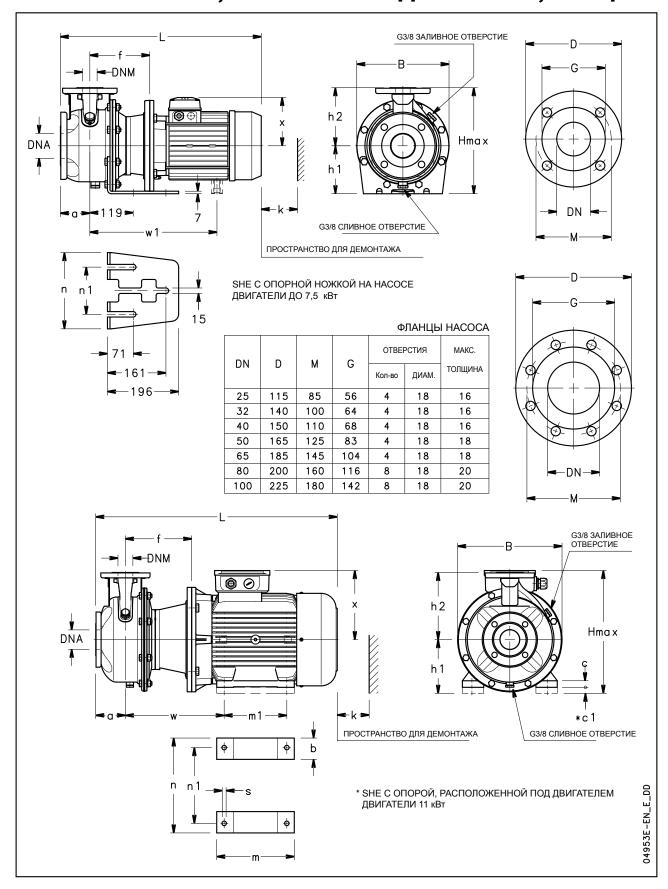

ТИП НАСОСА						Г	АБАРИ	ГНЫЕ	PA3N	ИЕРЫ	(мм)										BEC
ESHE4			н	ACOC								CTA	АНИН				В	н	L	k	
	DNM	DNA	а	h2	w	w1	х	b	с	*c1	h1	m	m1	n	n1	s		max			кг
25-125/02A/S	25	50	80	140	-	-	121	-	-	_	160	-	-	190	130	-	218	300	411	98	15
25-125/02/S	25	50	80	140	_	-	121	-	-	-	160	-	_	190	130	_	218	300	411	98	16
25-160/02A/S	25	50	80	160	-	_	121	-	-	-	160	_	_	210	130	-	253	320	411	98	18
25-160/02/S	25	50	80	160	-	-	121	-	-	-	160	-	-	210	130	_	253	320	411	98	19
25-200/03/S	25	50	80	180	_	_	121	-	-	-	160	_	_	230	130	-	284	340	411	98	26
25-200/05/S	25	50	80	180	-	-	129	-	-	-	160	-	_	230	130	-	284	340	443	98	27
25-250/07/X	25	50	100	225	-	-	128	-	-	-	180	-	-	265	130	-	345	405	431	98	42
25-250/11/P	25	50	100	225	_	_	134	-	-	-	180	_	_	265	130	-	345	405	498	98	49
25-250/15/P	25	50	100	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	498	98	51
32-125/02A/S	32	50	80	140	-	-	121	-	-	-	112	-	-	190	130	-	218	252	411	98	15
32-125/02/S	32	50	80	140	-	-	121	-	-	-	112	-	_	190	130	-	218	252	411	98	16
32-160/02A/S	32	50	80	160	-	-	121	-	-	-	132	-	-	210	130	-	253	292	411	98	18
32-160/02/S	32	50	80	160	-	-	121	-	-	-	132	-	-	210	130	-	253	292	411	98	19
32-200/03/S	32	50	80	180	-	-	121	-	-	-	160	-	-	230	130	-	284	340	411	98	26
32-200/05/S	32	50	80	180	-	-	129	-	-	-	160	-	_	230	130	-	284	340	443	98	27
32-250/07/X	32	50	100	225	-	-	128	-	-	-	180	-	-	265	130	-	345	405	431	98	42
32-250/11/P	32	50	100	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	498	98	49
32-250/15/P	32	50	100	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	498	98	51
40-125/02A/S	40	65	80	140	-	-	121	-	-	-	112	-	-	190	130	-	218	252	411	100	16
40-125/02/S	40	65	80	140	-	-	121	-	-	-	112	-	-	190	130	-	218	252	411	100	17
40-160/03/S	40	65	80	160	-	-	121	-	-	-	132	-	-	210	130	-	253	292	411	100	20
40-160/05/S	40	65	80	160	-	-	129	-	-	-	132	-	-	210	130	-	253	292	443	100	24
40-200/07/X	40	65	100	180	-	-	128	-	-	-	160	-	-	230	130	-	285	340	431	100	27
40-200/11/P	40	65	100	180	-	-	134	-	-	-	160	-	-	230	130	-	285	340	498	100	35
40-250/11/P	40	65	100	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	498	107	47
40-250/15/P	40	65	100	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	498	107	61
40-250/22/P	40	65	100	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	522	107	65
50-125/02/S	50	65	100	160	-	-	121	-	-	-	132	-	-	210	130	-	253	292	431	104	20
50-125/03/S	50	65	100	160	-	-	121	-	-	-	132	-	-	210	130	-	253	292	431	104	20
50-125/05/S	50	65	100	160	1	-	129	-	-	-	132	-	-	210	130	-	253	292	463	104	26
50-160/07/X	50	65	100	180	-	-	128	-	-	-	160	-	-	210	130	-	253	340	431	104	30
50-160/11/P	50	65	100	180	-	-	134	-	-	-	160	-	-	210	130	-	253	340	498	104	40
50-200/11/P	50	65	100	200	-	-	134	-	-	-	160	-	-	245	130	-	310	360	498	104	48
50-200/15/P	50	65	100	200	-	-	134	-	-	-	160	-	-	245	130	-	310	360	498	104	51
50-250/22A/P	50	65	100	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	522	107	56
50-250/22/P	50	65	100	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	522	107	56
50-250/30/P	50	65	100	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	553	107	62
65-200/15/P	65	80	100	225	1	-	134	-	-	-	180	-	-	245	130	-	310	405	498	130	56
65-200/22/P	65	80	100	225	-	-	168	-	-	-	180	-	-	245	130	-	310	405	522	130	64
65-200/30/P	65	80	100		-	-	168	-	-	-	180	-	-	245	130	-	310	405	553	130	64
65-250/40/P	65	80	100	250	1	315	168	-	-	-	200	-	-	265	130	-	345	450	598	140	84
65-250/55/P	65	80	100		-	343	191	-	-	-	200	-	-	265	130	-	345		605	140	97
80-160/15/P	80	100	125	225	-	-	134	-	-	-	180	-	-	265	130	-	345			160	55
80-160/22A/P	80	100	125		-	-	168	-	-	-	180	-	-	265	130	-	345		547	160	63
80-160/22/P	80	100			-	-	168	-	-	-	180	-	-	265	130	-	345		547	160	66
80-200/30/P	80	100	125	250	-	-	168	-	-	-	180	-	-	265	130	-	345	430	578	160	69
80-200/40/P	80	100		250	-	315	168	-	-	-	180	-	-	265	130	-	345	430	623	160	88
80-250/55/P	80	100	125	280	-	343	191	-	-	-	200	-	-	303	210	-	383	480	630	160	102
80-250/75/P	80	100	125	280	-	343	191	-	-	-	200	-	-	303	210	-	383		630	160	106
80-250/110/P	80	100	125	280	208	-	240	49	5	40	200	304	210	304	254	15	383	480	719	160	145

^{*} Подставка под двигатель по запросу

ESHE_4p50-en_a_td

серия eshs a xylem brand

СЕРИЯ ESHS ГАБАРИТЫ И ВЕС, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

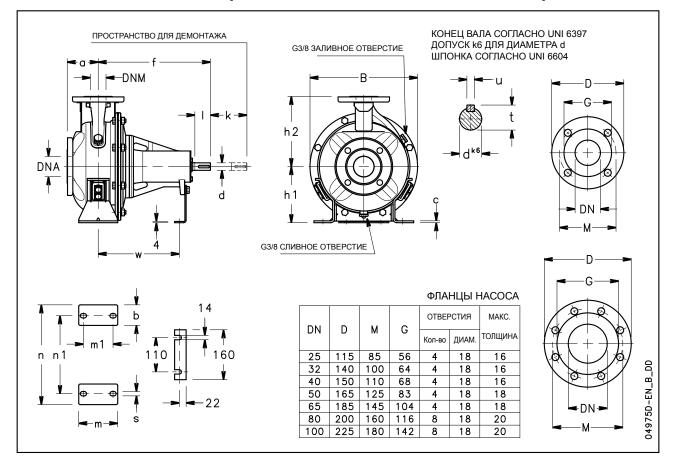

ТИП НАСОСА							ГАБ	АРИТНІ	SIE PA	АЗМЕ	РЫ (мм)										BEC
ESHS2				HACC	С								СТАНИ	1HA				В	н	L	k	ļ
	DNM	DNA	а	f	h2	w	w1	х	b	c	*c1	h1	m	m1	n	n1	s		max			кг
25-125/07/S	25	50	80	155	140	-	-	129	-	-	-	160	-	-	190	130	-	218	300	498	98	24
25-125/11/S	25	50	80	155	140	-	-	129	-	-	-	160	-	-	190	130	-	218	300	498	98	25
25-160/15/S	25	50	80	155	160	-	-	129	-	-	-	160	-	-	210	130	-	253	320	498	98	27
25-160/22/P	25	50	80	155	160	1	-	134	1	-	-	160	-	1	210	130	1	253	320	533	98	33
25-200/30/P	25	50	80	165	180	-	-	134	-	-	-	160	-	-	230	130	1	284	340	543	98	44
25-200/40/P	25	50	80	165	180	-	-	154	-	-	-	160	-	-	230	130	-	284	340	564	98	51
25-250/55/P	25	50	100	192	225	-	399	168	-	-	-	180	-	-	265	130	-	345	405	667	98	77
25-250/75/P	25	50	100	192	225	-	397	191	-	-	-	180	-	-	265	130	-	345	405	659	98	91
25-250/110/P	25	50	100	222	225	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	98	130
32-125/07/S	32	50	80	155	140	-	-	129	-	-	-	112	-	-	190	130	-	218	252	498	98	24
32-125/11/S	32	50	80	155	140	-	-	129	-	-	-	112	-	-	190	130	-	218	252	498	98	25
32-160/15/S	32	50	80	155	160	-	-	129	-	-	-	132	-	-	210	130	-	253	292	498	98	27
32-160/22/P	32	50	80	155	160	-	-	134	-	-	-	132	-	-	210	130	-	253	292	533	98	33
32-200/30/P	32	50	80	165	180	-	-	134	-	-	-	160	-	-	230	130	-	284	340	543	98	44
32-200/40/P	32	50	80	165	180	-	-	154	-	-	-	160	-	-	230	130	-	284	340	564	98	51
32-250/55/P	32	50	100	192	225	-	399	168	-	_	-	180	-	-	265	130	-	345	405	667	98	77
32-250/75/P	32	50	100	192	225	-	397	191	-	-	-	180	-	-	265	130	-	345	405	659	98	91
32-250/110/P	32	50	100	222	225	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	98	130
40-125/11/S	40	65	80	155	140	-	-	129	-	-	-	112	-	-	190	130	-	218	252	498	100	26
40-125/15/S	40	65	80	155	140	-	-	129	-	-	-	112	-	-	190	130	-	218	252	498	100	26
40-125/22/P	40	65	80	155	140	-	-	134	-	-	-	112	-	-	190	130	-	218	252	533	100	32
40-160/30/P	40	65	80	165	160	-	-	134	-	_	-	132	-	-	210	130	-	253	292	543	100	42
40-160/40/P	40	65	80	165	160	-	-	154	-	-	-	132	-	-	210	130	-	253	292	564	100	48
40-200/55/P	40	65	100	192	180	-	399	168	-	-	-	160	-	-	230	130	-	300	340	667	100	63
40-200/75/P	40	65	100	192	180	-	397	191	-	-	-	160	-	-	230	130	-	300	351	659	100	80
40-250/110A/P	40	65	100	222	225	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	107	129
40-250/110/P	40	65	100	222	225	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	107	129
40-250/150/P	40	65	100	222	225	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	107	142
50-125/22/P	50	65	100	155	160	-	-	134	-	-	-	132	-	-	210	130	-	253	292	553	104	36
50-125/30/P	50	65	100	165	160	-	-	134	-	_	-	132	-	-	210	130	-	253	292	563	104	37
50-125/40/P	50	65	100	165	160	-	-	154	-	-	-	132	-	-	210	130	-	253	292	584	104	48
50-160/55/P	50	65	100	192	180	-	399	168	-	_	-	160	-	-	210	130	-	300	340	667	104	62
50-160/75/P	50	65	100	192	180	-	397	191	-		-	160	-	-	210	130	-	300	351	659	104	81
50-200/110A/P	50	65	100	222	200	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	104	126
50-200/110/P	50	65	100	222	200	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	104	130
50-250/150/P	50	65	100	222	225	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	107	148
50-250/185/P	50	65	100		225	330	-	240	49	5	20	180	304		304	254		350	420	816	107	156
50-250/220/P	50	65	100	222	225	330	-	240	49	5	20	180	304	254	304	254	15	350	420	816	107	162
65-160/40/P	65	80	100	165	200	-	-	154	-	-	-	160	-	-	245	130	-	310	360	584	130	60
65-160/55/P	65	80	100	192	200	-	399	168	-	_	-	160	-	-	245	130	-	310	360	667	130	78
65-160/75/P	65	80	100	192	200	220	397	191	-	-	-	160	204	210	245	130	1 [310	360	659	130	93
65-160/110A/P 65-160/110/P	65 65	80	100	222	200	330 330	-	240	49 49	5	20	180	304 304	210	304	254 254	15 15	350 350	420 420	816 816	130	116
							-															
65-200/150/P	65	80	100	222	225	330	-	240	49	5	20	180	304	210	304	254	15	350	420	816	130	147
65-200/185/P	65	80	100	222	225 225	330	-	240	49 49	5	20	180	304 304	254 254	304	254 254	15 15	350 350	420 420	816 816	130	153 167
65-200/220/P 65-250/300/W	65 65	80	100	228	250	361	-	240 317	82	30	-	180	370	305	304 385	318		402	517	985	140	290
65-250/370/W	65	80	100	228	250	361	-	317	82	30	-	200	370	305	385	318	18	402	517	985	140	322
80-160/110/P	80	100	125	222	225	330	-	240	49	5	20	180	304	210	304	254	15	350	420	841	160	116
80-160/110/P 80-160/150/P	80	100	125	222	225	330	_	240	49	5	20	180	304	210	304	254	15	350	420	841	160	152
80-160/185/P	80	100	125	222	225	330	-	240	49	5	20	180	304		304	254	15	350	420	841	160	160
	80	100	125	222	250		-	240	49	5	20	180	304	254	304	254	15	350	430	841	160	162
80-200/220/P 80-200/300/W	80	100	125	228	250	361	-	317	82	30	20	200	370	305	385	318		402	517	985	160	312
80-200/300/W 80-200/370/W	80	100		228	250		-	317	82	30	-	200	370	305	385	318		402	517	985	160	317
00-200/370/00	60	100	120	220	∠30	וטכ		/اد	02	υC		200	3/0	202	دەد	0 ا د	10	402	/וכ		HS 2n5	/اد

^{*} Подставка под двигатель по запросу

ESHS_2p50-en_a_td

СЕРИЯ ESHS ГАБАРИТЫ И ВЕС, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

СЕРИЯ ESHS ГАБАРИТЫ И ВЕС, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ


		ГАБАРИТНЫЕ РАЗМЕРЫ (мм) НАСОС СТАНИНА																	BEC			
ESHS4				HACO	С							C.	ТАНИН	IA				В	Н	L	k	
1	DNM	DNA	а	f	h2	w	w1	х	b	с	*c1	h1	m	m1	n	n1	s		max			кг
25-250/07/X	25	50	100	155	225	-	1	128	1	-	•	180	1	1	265	130	-	345	405	486	98	42
25-250/11/P	25	50	100	155	225	-	-	134	1	-	-	180	-	-	265	130	-	345	405	553	98	49
25-250/15/P	25	50	100	155	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	553	98	50
32-250/07/X	32	50	100	155	225	1	1	128	1	-	-	180	1	1	265	130	-	345	405	486	98	42
32-250/11/P	32	50	100	155	225	-	-	134	1	-	-	180	-	-	265	130	-	345	405	553	98	49
32-250/15/P	32	50	100	155	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	553	98	50
40-200/07/X	40	65	100	155	180	-	-	128	-	-	-	160	-	-	230	130	-	284	340	486	##	31
40-200/11/P	40	65	100	155	180		-	134	1	-	-	160	-	-	230	130	-	284	340	553	##	37
40-250/11/P	40	65	100	155	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	553	##	51
40-250/15/P	40	65	100	155	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	553	##	64
40-250/22/P	40	65	100	165	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	587	##	68
50-160/07/X	50	65	100	155	180	-	-	128	-	-	-	160	-	-	210	130	-	253	340	486	##	30
50-160/11/P	50	65	100	155	180	-	-	134	-	-	-	160	-	-	210	130	-	253	340	553	##	36
50-200/11/P	50	65	100	155	200	-	-	134	1	-	-	160	-	-	245	130	-	310	360	553	##	49
50-200/15/P	50	65	100	155	200	-	-	134	-	-	-	160	-	-	245	130	-	310	360	553	##	52
50-250/22A/P	50	65	100	165	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	587	##	58
50-250/22/P	50	65	100	165	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	587	##	59
50-250/30/P	50	65	100	165	225		-	168	1	-	-	180	1	-	265	130	-	345	405	618	##	65
65-200/15/P	65	80	100	155	225	-	-	134	-	-	-	180	-	-	245	130	-	310	405	553	##	54
65-200/22/P	65	80	100	165	225	-	-	168	-	-	-	180	-	-	245	130	-	310	405	587	##	71
65-200/30/P	65	80	100	165	225	-	-	168		-	-	180	-	-	245	130	-	310	405	618	##	72
65-250/40/P	65	80	100	165	250	-	380	168	1	-	-	200	-	-	265	130	-	345	450	663	##	97
65-250/55/P	65	80	100	192	250	-	435	191	1	-	-	200	-	-	265	130	-	345	450	697	##	104
80-160/15/P	80	100	125	155	225	-	-	134	-	-	-	180	-	-	265	130	-	345	405	578	##	59
80-160/22A/P	80	100	125	165	225	-	-	168	-	-	-	180	-	-	265	130	-	345	405	612	##	67
80-160/22/P	80	100	125	165	225	-	-	168	1	-	-	180	-	-	265	130	-	345	405	612	##	67
80-200/30/P	80	100	125	165	250	-	-	168	-	-	-	180	-	-	265	130	-	345	430	643	##	72
80-200/40/P	80	100	125	165	250	-	380	168	-	-	-	180	-	-	265	130	-	345	430	688	##	88
80-250/55/P	80	100	125	192	280	-	435	191	-	-	-	200	-	-	303	210	-	383	480	722	##	107
80-250/75/P	80	100	125	192	280	-	435	191	-	-	-	200	-	-	303	210	-	383	480	722	##	113
80-250/110/P	80	100	125	222	280	330	-	240	49	5	40	200	##	210	304	254	15	383	480	841	##	153

^{*} Морстаньы под двигение по запросу

ESHS_4p50-en_a_td

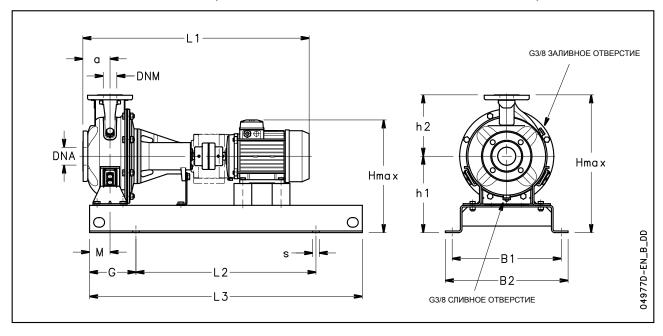
СЕРИЯ ESH ГАБАРИТЫ И ВЕС (СВОБОДНЫЙ КОНЕЦ ВАЛА)

СЕРИЯ ESH ГАБАРИТЫ И ВЕС (СВОБОДНЫЙ КОНЕЦ ВАЛА)

ТИП НАСОСА									ГАБА	РИТНЫ	E PA3MI	ЕРЫ (мк	1)								BEC
ESH			н	ACOC						c	ТАНИНАТ	4				E	ВАЛ		В	k	
(СВОБОДНЫЙ КОНЕЦ ВАЛА)	NM	DNA	а	f	h1	h2	b	c	m	m1	n	n1	s	w	d	ı	t	u			кг
25-125	25	50	80	360	112	140	47	3	100	70	190	140	14	260	24	50	27	8	218	98	14
25-160	25	50	80	360	132	160	48	3	100	70	240	190	14	260	24	50	27	8	253	98	17
25-200	25	50	80	360	160	180	47	3	100	70	240	190	14	260	24	50	27	8	284	98	20
25-250	25	50	100	360	180	225	54	6	125	95	320	250	14	260	24	50	27	8	345	98	34
32-125	32	50	80	360	112	140	47	3	100	70	190	140	14	260	24	50	27	8	218	98	14
32-160	32	50	80	360	132	160	48	3	100	70	240	190	14	260	24	50	27	8	253	98	17
32-200	32	50	80	360	160	180	47	3	100	70	240	190	14	260	24	50	27	8	284	98	20
32-250	32	50	100	360	180	225	54	6	125	95	320	250	14	260	24	50	27	8	345	98	34
40-125	40	65	80	360	112	140	47	3	100	70	210	160	14	260	24	50	27	8	218	100	16
40-160	40	65	80	360	132	160	48	3	100	70	240	190	14	260	24	50	27	8	253	100	18
40-200	40	65	100	360	160	180	50	3	100	70	265	212	14	260	24	50	27	8	284	100	20
40-250	40	65	100	360	180	225	54	6	125	95	320	250	14	260	24	50	27	8	345	107	33
50-125	50	65	100	360	132	160	48	3	100	70	240	190	14	260	24	50	27	8	253	104	17
50-160	50	65	100	360	160	180	48	3	100	70	265	212	14	260	24	50	27	8	253	104	24
50-200	50	65	100	360	160	200	40	6	100	70	265	212	14	260	24	50	27	8	310	104	30
50-250	50	65	100	360	180	225	54	6	125	95	320	250	14	260	24	50	27	8	345	107	37
65-160	65	80	100	360	160	200	48	6	125	95	280	212	14	260	24	50	27	8	310	130	31
65-200	65	80	100	360	180	225	65	15	125	95	320	250	14	260	24	50	27	8	310	130	42
65-250	65	80	100	470	200	250	80	18	160	120	360	280	18	340	32	80	35	10	345	140	55
80-160	80	100	125	360	180	225	54	6	125	95	320	250	14	260	24	50	27	8	345	160	37
80-200	80	100	125	470	180	250	65	15	125	95	345	280	14	340	32	80	35	10	345	160	55
80-250	80	100	125	470	200	280	80	18	160	120	400	315	18	340	32	80	35	10	383	160	67

ESHbs-en_a_td

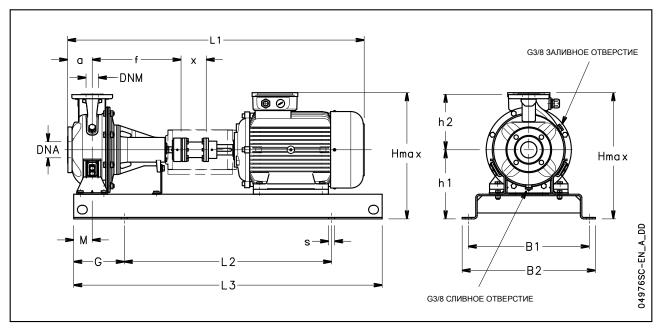
СЕРИЯ ESHF ГАБАРИТЫ И ВЕС, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ


СЕРИЯ ESHF ГАБАРИТЫ И ВЕС, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

ТИП НАСОСА						ГАБАРИ	1ТНЫЕ РА	ЗМЕРЫ (м	м)					s	BEC	тип
ESHF2		i i		i	ì	1		11	i	ì	i	i	i	для		МУФТЫ
	DNM	DNA	a	B1	B2	L1	L2	L3	G	М	h1	h2	Hmax	винтов	кг	
25-125/07/S	25	50	80	320	360	746	540	800	130	60	212	140	352	M16	67	A2
25-125/11/S	25	50	80	320	360	746	540	800	130	60	212	140	352	M16	69	A2
25-160/15/P	25	50	80	350	390	791	600	900	150	60	232	160	392	M16	73	A3
25-160/22/P	25	50	80	350	390	791	600	900	150	60	232	160	392	M16	75	A3
25-200/30/P	25	50	80	350	390	822	600	900	150	60	260	180	440	M16	95	B1
25-200/40/P	25	50	80	350	390	825	600	900	150	60	260	180	440	M16	97	B1
25-250/55/P	25	50	100	440	490	910	740	1120	190	75	280	225	505	M20	130	C1
25-250/75/P	25	50	100	440	490	910	740	1120	190	75	280	225	505	M20	134	C1
25-250/110/P	25	50	100	490	540	1067	840	1250	205	75	280	225	520	M20	181	C2
32-125/07/S	32	50	80	320	360	746	540	800	130	60	212	140	352	M16	67	A2
32-125/11/S	32	50	80	320	360	746	540	800	130	60	212	140	352	M16	69	A2
32-160/15/P	32	50	80	350	390	791	600	900	150	60	232	160	392	M16	73	A3
32-160/22/P	32	50	80	350	390	791	600	900	150	60	232	160	392	M16	75	A3
32-200/30/P	32	50	80	350	390	822	600	900	150	60	260	180	440	M16	95	B1
32-200/40/P	32	50	80	350	390	825	600	900	150	60	260	180	440	M16	97	B1
32-250/55/P	32	50	100	440	490	910	740	1120	190	75	280	225	505	M20	130	C1
32-250/75/P	32	50	100	440	490	910	740	1120	190	75	280	225	505	M20	134	C1
32-250/110/P	32	50	100	490	540	1067	840	1250	205	75	280	225	520	M20	181	C2
40-125/11/S	40	65	80	350	390	746	600	900	150	60	212	140	352	M16	70	A2
40-125/15/P	40	65	80	350	390	791	600	900	150	60	212	140	352	M16	74	A3
40-125/22/P	40	65	80	350	390	791	600	900	150	60	212	140	352	M16	77	A3
40-160/30/P	40	65 65	80	350	390	822	600	900	150	60	232	160	392	M16	92	B1
40-160/40/P	40		80	350	390	825	600	900	150	60	232	160	400	M16	96	B1
40-200/55/P	40	65 65	100	400	450 450	910 910	660 660	1000	170 170	60 60	260 260	180 180	451 451	M20 M20	123 128	C1
40-200/75/P	40	65	100	490	540	1067	840	1250	205	75	280	225	520		167	C2
40-250/110A/P 40-250/110/P	40	65	100	490	540	1067	840	1250	205	75	280	225	520	M20 M20	170	C2
40-250/110/P	40	65	100	490	540	1067	840	1250	205	75	280	225	520	M20	175	C2
50-125/22/P	50	65	100	350	390	811	600	900	150	60	232	160	392	M16	84	A3
50-125/30/P	50	65	100	350	390	842	600	900	150	60	232	160	392	M16	92	B1
50-125/40/P	50	65	100	350	390	845	600	900	150	60	232	160	400	M16	95	B1
50-160/55/P	50	65	100	400	450	910	660	1000	170	60	260	180	451	M20	120	C1
50-160/75/P	50	65	100	400	450	910	660	1000	170	60	260	180	451	M20	122	C1
50-200/110A/P	50	65	100	440	490	1067	740	1120	190	60	260	200	500	M20	145	C2
50-200/110/P	50	65	100	440	490	1067	740	1120	190	60	260	200	500	M20	150	C2
50-250/150/P	50	65	100	490	540	1067	840	1250	205	75	280	225	520	M20	165	C2
50-250/185/P	50	65	100	490	540	1067	840	1250	205	75	280	225	520	M20	170	C2
50-250/220/W	50	65	100	490	540	1127	840	1250	205	75	280	225	559	M20	246	D1
65-160/40/P	65	80	100	400	450	845	660	1000	170	75	260	200	460	M20	133	B1
65-160/55/P	65	80	100	440	490	910	740	1120	190	75	260	200	460	M20	155	C1
65-160/75/P	65	80	100	440	490	910	740	1120	190	75	260	200	460	M20	159	C1
65-160/110A/P	65	80	100	490	540	1067	840	1250	205	75	260	200	500	M20	162	C2
65-160/110/P	65	80	100	490	540	1067	840	1250	205	75	260	200	500	M20	162	C2
65-200/150/P	65	80	100	490	540	1067	840	1250	205	75	280	225	520	M20	185	C2
65-200/185/P	65	80	100	490	540	1067	840	1250	205	75	280	225	520	M20	190	C2
65-200/220/W	65	80	100	490	540	1127	840	1250	205	75	280	225	559	M20	274	D1
65-250/300/W	65	80	100	550	610	1340	940	1400	230	90	310	250	627	M24	367	E1
65-250/370/W	65	80	100	550	610	1340	940	1400	230	90	310	250	627	M24	403	E1
80-160/110/P	80	100	125	490	540	1092	840	1250	205	75	280	225	520	M20	198	C2
80-160/150/P	80	100	125	490	540	1092	840	1250	205	75	280	225	520	M20	209	C2
80-160/185/P	80	100	125	490	540	1092	840	1250	205	75	280	225	520	M20	220	C2
80-200/220/W	80	100	125	490	540	1262	840	1250	205	75	280	250	559	M20	302	D2
80-200/300/W	80	100	125	550	610	1365	940	1400	230	75	310	250	627	M24	373	E1
80-200/370/W	80	100	125	550	610	1365	940	1400	230	75	310	250	627	M24	402	E1
80-250/450/W	80	100	125	550	610	1454	940	1400	230	90	365	280	749	M24	501	E1
80-250/550/W	80	100	125	600	660	1563	1060	1600	270	90	390	280	792	M24	582	F1
	80	100	125	670	730	1670	1200	1800	300	90	420	280	892	M24	700	G1

ESHF_2p50-en_a_td

СЕРИЯ ESHF ГАБАРИТЫ И ВЕС, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ


СЕРИЯ ESHF ГАБАРИТЫ И ВЕС, 4-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

ТИП НАСОСА						ГАБАРИ	ІТНЫЕ РА	ЗМЕРЫ (мі	м)					S	BEC	ТИП
ESHF4		i i	1								ii.		0	для		МУФТЫ
	DNM	DNA	а	B1	B2	L1	L2	L3	G	М	h1	h2	Hmax	винтов	кг	
25-125/02A/S	25	50	80	320	360	704	540	800	130	60	212	140	352	M16	72	A1
25-125/02/S	25	50	80	320	360	704	540	800	130	60	212	140	352	M16	72	A1
25-160/02A/S	25	50	80	320	360	704	540	800	130	60	232	160	392	M16	74	A1
25-160/02/S	25	50	80	320	360	704	540	800	130	60	232	160	392	M16	74	A1
25-200/03/S	25	50	80	320	360	704	540	800	130	60	260	180	440	M16	78	A1
25-200/05/S	25	50	80	320	360	746	540	800	130	60	260	180	440	M16	80	A2
25-250/07/X	25	50	100	400	450	734	660	1000	170	75	280	225	505	M20	98	A2
25-250/11/P	25	50	100	400	450	811	660	1000	170	75	280	225	505	M20	106	A3
25-250/15/P	25	50	100	400	450	811	660	1000	170	75	280	225	505	M20	108	A3
32-125/02A/S	32	50	80	320	360	704	540	800	130	60	212	140	352	M16	72	A1
32-125/02/S	32	50	80	320	360	704	540	800	130	60	212	140	352	M16	72	A1
32-160/02A/S	32	50	80	320	360	704	540	800	130	60	232	160	392	M16	74	A1
32-160/02/S	32	50	80	320	360	704	540	800	130	60	232	160	392	M16	74	A1
32-200/03/S	32	50	80	320	360	704	540	800	130	60	260	180	440	M16	78	A1
32-200/05/S	32	50	80	320	360	746	540	800	130	60	260	180	440	M16	80	A2
32-250/07/X	32	50	100	400	450	734	660	1000	170	75	280	225	505	M20	98	A2
32-250/11/P	32	50	100	400	450	811	660	1000	170	75	280	225	505	M20	106	A3
32-250/15/P	32	50	100	400	450	811	660	1000	170	75	280	225	505	M20	108	A3
40-125/02A/S	40	65	80	320	360	704	540	800	130	60	212	140	352	M16	57	A1
40-125/02/S	40	65	80	320	360	704	540	800	130	60	212	140	352	M16	57	A1
40-160/03/S	40	65	80	320	360	704	540	800	130	60	232	160	392	M16	60	A1
40-160/05/S	40	65	80	320	360	746	540	800	130	60	232	160	392	M16	62	A2
40-100/03/3 40-200/07/X	40	65	100	350	390	734	600	900	150	60	260	180	440	M16	70	A2 A2
40-200/07/X 40-200/11/P	40	65	100	350	390	811	600	900	150	60	260	180	440	M16	78	A3
40-250/11/P	40	65	100	400	450	811	660	1000	170	75	280	225	505	M20	105	A3
40-250/11/F 40-250/15/P	40	65	100	400	450	811	660	1000	170	75	280	225	505	M20	103	A3
40-250/13/P	40	65	100	400	450	888	660	1000	170	75	280	225	505	M20	131	B1
50-125/02/S	50	65	100	320	360	724	540	800	130	60	232	160	392	M16	59	A1
	50	65	100	320	360	724	540	800	130	60	232	160	392		59	
50-125/03/S 50-125/05/S	50	65	100	320	360	766	540	800	130	60	232		392	M16	61	A1 A2
		65										160		M16		
50-160/07/X	50		100	350	390	734	600	900	150	60	260	180	440	M16	69	A2
50-160/11/P	50	65	100	350	390	811	600	900	150	60	260	180	440	M16	77	A3
50-200/11/P	50	65	100	350	390	811	600	900	150	60	260	200	460	M16	88	A3
50-200/15/P	50	65	100	350	390	811	600	900	150	60	260	200	460	M16	91	A3
50-250/22A/P	50	65	100	400	450	888	660	1000	170	75	280	225	505	M20	132	B1
50-250/22/P	50	65	100	400	450	888	660	1000	170	75	280	225	505	M20	132	B1
50-250/30/P	50	65	100	400	450	888	660	1000	170	75	280	225	505	M20	136	B1
65-200/15/P	65	80	100			811		1000		75	280	225		M20	109	A3
65-200/22/P	65	80	100	440	490	888	740	1120	190	75	280	225	505	M20	133	B1
65-200/30/P	65	80	100	440	490	888	740	1120	190	75	280	225	505	M20	137	B1
65-250/40/P	65	80	100	440	490	1031	740	1120	190	90	310	250	550	M20	178	C3
65-250/55/P	65	80	100	440	490	1058	740	1120	190	90	310	250	550	M20	193	C4
80-160/15/P	80	100	125	400	450	836	660	1000	170	75	280	225	505	M20	127	A3
80-160/22A/P	80	100	125	440	490	913	740	1120	190	75	280	225	505	M20	143	B1
80-160/22/P	80	100	125	440	490	913	740	1120	190	75	280	225	505	M20	143	B1
80-200/30/P	80	100	125	440	490	1023	740	1120	190	75	280	250	530	M20	162	C3
80-200/40/P	80	100	125	440	490	1056	740	1120	190	75	280	250	530	M20	171	C3
80-250/55/P	80	100	125	490	540	1083	840	1250	205	90	310	280	590	M20	194	C4
80-250/75/P	80	100	125	490	540	1083	840	1250	205	90	310	280	590	M20	198	C4
80-250/110/P	80	100	125	490	540	1202	840	1250	205	90	310	280	590	M20	256	C5

ESHF_4p50-en_a_td

СЕРИЯ ESHC ГАБАРИТЫ И ВЕС, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

СЕРИЯ ESHC ГАБАРИТЫ И ВЕС, 2-ПОЛЮСНЫЕ ДВИГАТЕЛИ, 50 ГЦ

ТИП НАСОСА						ГА	БАРИТНЬ	JE PA3ME	РЫ (ми	1)						S	BEC	тип
ESHC2																для		МУФТЫ
	DNM	DNA	а	В1	B2	L1	L2	L3	G	М	h1	h2	Hmax	f	х	винтов	кг	
32-125/07/S	32	50	80	320	360	845	540	800	130	60	212	140	352	360	100	M16	69	A2S
32-125/11/S	32	50	80	320	360	845	540	800	130	60	212	140	352	360	100	M16	71	A2S
32-160/15/P	32	50	80	350	390	889	600	900	150	60	232	160	392	360	100	M16	75	A3S
32-160/22/P	32	50	80	350	390	889	600	900	150	60	232	160	392	360	100	M16	77	A3S
32-200/30/P	32	50	80	350	390	920	600	900	150	60	260	180	440	360	100	M16	97	B1S
32-200/40/P	32	50	80	350	390	923	600	900	150	60	260	180	440	360	100	M16	99	B1S
32-250/55/P	32	50	100	440	490	1007	740	1120	190	75	280	225	505	360	100	M20	132	C1S
32-250/75/P	32	50	100	440	490	1007	740	1120	190	75	280	225	505	360	100	M20	136	C1S
32-250/110/P	32	50	100	490	540	1164	840	1250	205	75	280	225	520	360	100	M20	183	C2S
40-125/11/S	40	65	80	350	390	845	600	900	150	60	212	140	352	360	100	M16	72	A2S
40-125/15/P	40	65	80	350	390	889	600	900	150	60	212	140	352	360	100	M16	76	A3S
40-125/22/P	40	65	80	350	390	889	600	900	150	60	212	140	352	360	100	M16	79	A3S
40-160/30/P	40	65	80	350	390	920	600	900	150	60	232	160	392	360	100	M16	94	B1S
40-160/40/P	40	65	80	350	390	923	600	900	150	60	232	160	400	360	100	M16	98	B1S
40-200/55/P	40	65	100	400	450	1007	660	1000	170	60	260	180	451	360	100	M20	125	C1S
40-200/75/P	40	65	100	400	450	1007	660	1000	170	60	260	180	451	360	100	M20	130	C1S
40-250/110A/P	40	65	100	490	540	1164	840	1250	205	75	280	225	520	360	100	M20	169	C2S
40-250/110/P	40	65	100	490	540	1164	840	1250	205	75	280	225	520	360	100	M20	172	C2S
40-250/150/P	40	65	100	490	540	1164	840	1250	205	75	280	225	520	360	100	M20	177	C2S
50-125/22/P	50	65	100	350	390	909	600	900	150	60	232	160	392	360	100	M16	86	A3S
50-125/30/P	50	65	100	350	390	940	600	900	150	60	232	160	392	360	100	M16	94	B1S
50-125/40/P	50	65	100	350	390	943	600	900	150	60	232	160	400	360	100	M16	97	B1S
50-160/55/P	50	65	100	400	450	1007	660	1000	170	60	260	180	451	360	100	M20	122	C1S
50-160/75/P	50	65	100	400	450	1007	660	1000	170	60	260	180	451	360	100	M20	124	C1S
50-200/110A/P	50	65	100	440	490	1164	740	1120	190	60	260	200	500	360	100	M20	147	C2S
50-200/110/P	50	65	100	440	490	1164	740	1120	190	60	260	200	500	360	100	M20	152	C2S
50-250/150/P	50	65	100	490	540	1164	840	1250	205	75	280	225	520	360	100	M20	167	C2S
50-250/185/P	50	65	100	490	540	1164	840	1250	205	75	280	225	520	360	100	M20	172	C2S
50-250/220/W	50	65	100	490	540	1224	840	1250	205	75	280	225	559	360	100	M20	248	D1S
65-160/40/P	65	80	100	400	450	943	660	1000	170	75	260	200	460	360	100	M20	135	B1S
65-160/55/P	65	80	100	440	490	1007	740	1120	190	75	260	200	460	360	100	M20	157	C1S
65-160/75/P	65	80	100	440	490	1007	740	1120	190	75	260	200	460	360	100	M20	161	C1S
65-160/110A/P	65	80	100	490	540	1164	840	1250	205	75	260	200	500	360	100	M20	164	C2S
65-160/110/P	65	80	100	490	540	1164	840	1250	205	75	260	200	500	360	100	M20	164	C2S
65-200/150/P	65	80	100	490	540	1164	840	1250	205	75	280	225	520	360	100	M20	187	C2S
65-200/185/P	65	80	100	490	540	1164	840	1250	205	75	280	225	520	360	100	M20	192	C2S
65-200/220/W	65	80	100	490	540	1224	840	1250		75		225	559	360	100	M20	276	D1S
65-250/300/W	65	80		550		1477	940	1400		90		250		470		M24	370	E1S
65-250/370/W	65	80		550		1477	940	1400		90		250	627	470		M24	406	E1S
80-160/110/P	80	100		490	540	1189	840	1250	205	75		225	520	360		M20	200	C2S
80-160/150/P	80	100			540	1189	840	1250	205	75	280		520		100	M20	211	C2S
80-160/185/P	80	100			540	1189	840	1250		75		225	520	360		M20	222	C2S
80-200/220/W	80	100		490	540	1359	840	1250		75		250		470		M20	304	D2S
80-200/300/W	80	100		550	610	1502	940		230	75		250	627	470		M24	376	E1S
80-200/370/W	80	100		550	610	1502	940	1400		75		250	627	470		M24	405	E1S
80-250/450/W	80	100		550		1591	940	1400		90		280	749	470		M24	504	E1S
80-250/550/W	80		125			1700	1060			90		280		470		M24	587	F1S
80-250/750/W	80		125			1807	1200			90		280			140		706	G1S
00 200//00/00	50	100	123	0/0	100	1007	1200	1000	200	20	720	200	032	7/0	1+0	IVIZT	, 00	017

ESHC_2p50-en_a_td

ESH..H (ESH C HYDROVAR)

СЕРИЯ eSH..H (e-SH C HYDROVAR)

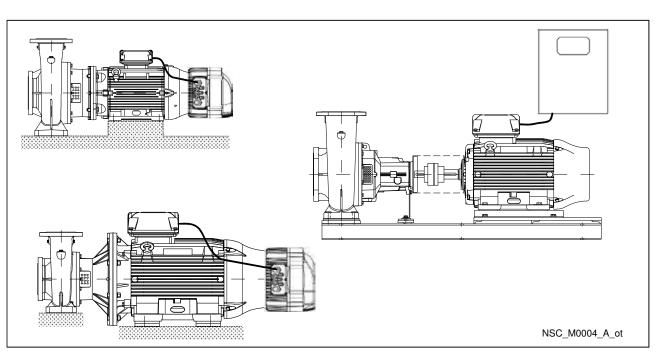
Общие сведения

Во всех областях применения, таких как коммунальные системы, промышленность, сельское хозяйство спрос на интеллектуальные системы постоянно возрастает. Использование интеллектуальных систем дает целый ряд преимуществ: снижение затрат на эксплуатацию насоса,

Использование интеллектуальных систем дает целый ряд преимуществ: снижение затрат на эксплуатацию насоса, уменьшение воздействия на окружающую среду, увеличение срока службы трубопроводов и арматуры. Поэтому компания Lowara разработала интеллектуальные насосные системы eSH..H, обеспечивающие высокую производительность при низком потреблении электроэнергии.

Преимущества eSH с HYDROVAR

Экономия: eSH..Н позволяет модернизировать насосы eSH в интеллектуальные насосные системы с возможностью регулирования частоты вращения. Благодаря модулю HYDROVAR скорость каждого насоса изменяется для того, чтобы поддерживать постоянный расход, давление или перепад давлений. Насос потребляет только то количество энергии, которое необходимую для выполнения текущей работы, таким образом, обеспечивая значительную экономию, особенно для тех систем, нагрузка на которые в течение суток меняется.


Легкость установки и экономия пространства:

Установка eSH..Н экономит и время, и место для монтажа. Система устанавливается непосредственно на двигатель (до 22 кВт), вентилятор которого охлаждает HYDROVAR. Такая установка не требует дополнительного шкафа управления, необходим только предохранительный автомат в сети питания. Для систем с насосами более высокой мощности (до 45 кВт) доступна настенная версия HYDROVAR.

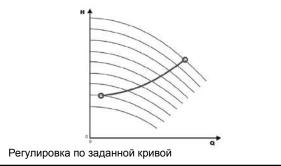
Стандартные двигатели: Модели eSH..Н оборудуются стандартными трехфазными двигателями TEFC с классом изоляции 155 (F).

Специальные функции/преимущества

- Нет необходимости установки дополнительных датчиках давления: система eSH..Н оборудована датчиком давления или датчиками перепада давления, в зависимости от предназначения.
- Нет необходимости в применении специальной конструкции насоса или двигателя.
- Нет необходимости в байпасных линиях или системах безопасности: как только потребность падает до нуля или максимальная подача превышает установленное значение, насос немедленно отключается. Это делает установку дополнительных средств безопасности ненужной.
- Антиконденсатное устройство: все блоки оборудованы антиконденсатными подогревателями, которые включаются, когда насос находится в режиме ожидания, чтобы предотвратить образование влаги.

СЕРИЯ ESH..H (ESH C HYDROVAR)

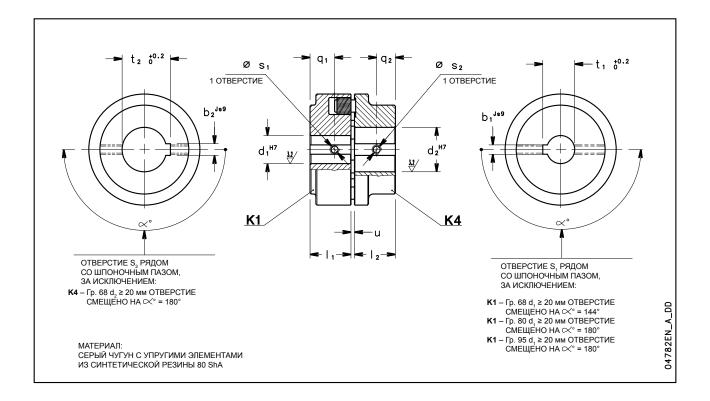
Основная задача модуля HYDROVAR – контроль насоса для обеспечения необходимых параметров системы.


HYDROVAR осуществляет эти функции с помощью:

- 1) измерения давления в системе или расхода с помощью датчика, установленного на нагнетании насоса;
- 2) расчета скорости вращения двигателя для поддержания заданного расхода или давления;
- 3) передачи насосу сигнала запуска двигателя, увеличения скорости, снижения скорости или остановки.
- 4) В случае установки нескольких насосов HYDROVAR автоматически обеспечит циклическую смену последовательности запуска насосов.

В дополнение к этим основным функциям HYDROVAR может выполнять действия, доступные только самым совершенным системам управления:

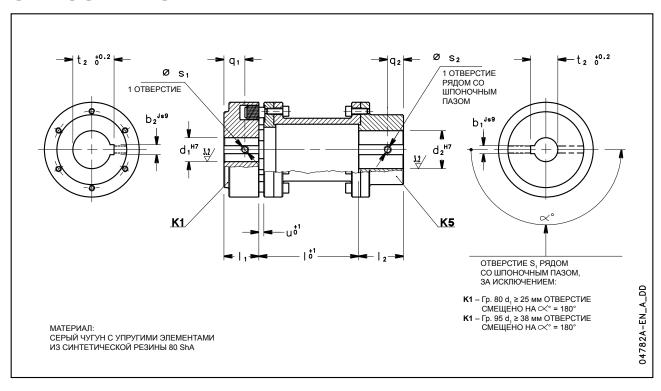
- остановка насоса при нулевой потребности;
- остановка насоса в случае отсутствия воды (защита от сухого хода);
- остановка насоса, если требуемая подача превышает максимальную подачу насоса (защита от кавитации), или автоматическое включение следующего насоса при работе в системе с несколькими насосами;
- защита насоса и двигателя от повышенного и пониженного напряжения, перегрузки и короткого замыкания;
- регулировка скорости насоса: время ускорения и замедления;
- компенсация возрастания гидравлического сопротивления при высоких уровнях расхода;
- проведение автоматических тестов через заданные интервалы;
- подсчет рабочего времени преобразователя частоты и двигателя;
- отображение всех функций на ЖК-дисплее на различных языках (итальянском, английском, французском, немецком, испанском, португальском, голландском);
- передача сигнала дистанционной системе управления (диспетчеризация);
- связь с другим HYDROVAR или системой управления через интерфейс RS 485.



ПРИНАДЛЕЖНОСТИ

РАЗМЕРЫ ГИБКОЙ МУФТЫ

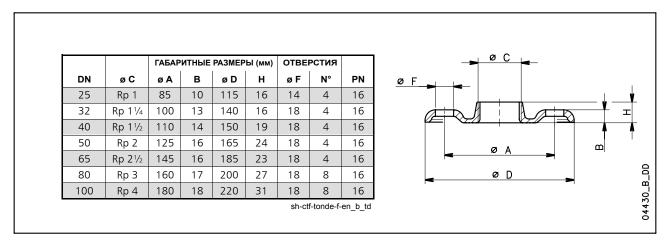
a **xylem** brand


исх. точ.	ДЕТАЛЬ					Г	АБАРИТЬ	ные размі	ЕРЫ (мм)					
104.				۲	(1						K4			
			ПОЛУМ	ІУФТА СО	стороны	HACOCA			полу	/МУФТА С	о сторон	ІЫ ДВИГАТ		
	TИΠΟΡΑЗМЕР x d ₁ x d ₂	d ₁ ^{H7}	I ₁	b ₁ js9	t _{1 0} +0.2	S ₁	$\mathbf{q_1}$	u	d_2^{H7}	l ₂	b ₂ js9	t _{2 0} +0.2	s ₂	q_2
A1	B 68 x 24 x 14	24	20	8	27,3	M6	10	2÷4	14	20	5	16,3	M6	8
A2	B 68 x 24 x 19	24	20	8	27,3	M6	10	2÷4	19	20	6	21,8	M6	8
А3	B 68 x 24 x 24	24	20	8	27,3	M6	10	2÷4	24	20	8	27,3	M6	8
B1	B 80 x 24 x 28	24	30	8	27,3	M6	19	2÷4	28	30	8	31,3	M6	12
C1	B 95 x 24 x 38	24	35	8	27,3	M6	20	2÷4	38	35	10	41,3	M6	15
C2	B 95 x 24 x 42	24	35	8	27,3	M6	20	2÷4	42	35	12	45,3	M6	15
C3	B 95 x 32 x 28	32	35	10	35,3	M6	20	2÷4	28	35	8	31,3	M6	15
C4	B 95 x 32 x 38	32	35	10	35,3	M6	20	2÷4	38	35	10	41,3	M6	15
C5	B 95 x 32 x 42	32	35	10	35,3	M6	20	2÷4	42	35	12	45,3	M6	15
D1	B 110 x 24 x 48	24	40	8	27,3	M6	22	2÷4	48	40	14	51,8	M6	18
D2	B 110 x 32 x 48	32	40	10	35,3	M6	22	2÷4	48	40	14	51,8	M6	18
E1	B 125 x 32 x 55	32	50	10	35,3	M8	30	2÷4	55	50	16	59,3	M8	20
F1	B 140 x 32 x 60	32	55	10	35,3	M8	13	2÷4	60	55	18	64,4	M8	22
G1	B 160 x 32 x 65	32	60	10	35,3	M10	13	2÷6	65	60	18	69,4	M10	25

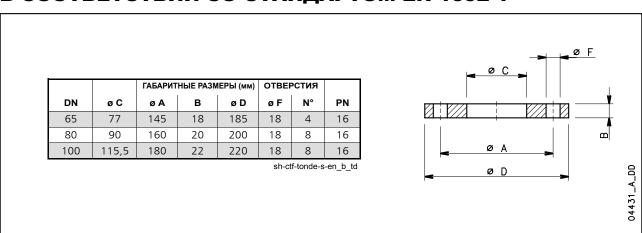
ПРИМЕЧАНИЕ: Версия не АТЕХ.

shf-giunto-elastico-en_c_td

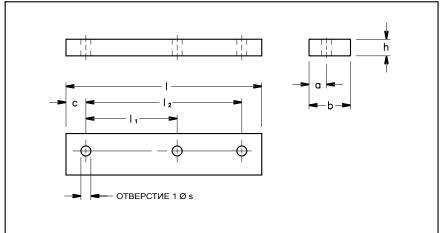
РАЗМЕРЫ ГИБКОЙ МУФТЫ С ПРОСТАВКОМ

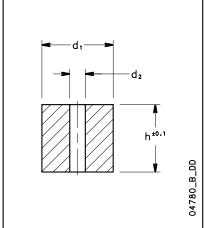

исх. точ.	ДЕТАЛЬ						ГАБАР	ИТНЫЕ Р	РАЗМЕРЫ	l (мм)					
104.					K1							K5			
			полу	МУФТА С	о стороі	ны насо	CA			полуму	ФТА СО (сторонь	І ДВИГАТІ	ЕЛЯ	
	TИΠΟΡΑЗΜΕΡ x d ₁ x d ₂	l ₀ ⁺¹	d_1^{H7}	I ₁	b ₁ js9	t _{1 0} +0.2	S ₁	\mathbf{q}_1	u	d ₂ ^{H7}	l ₂	b ₂ js9	t _{2 0} +0.2	S ₂	q_2
A2S	H 80-100 x 24 x 19	100	24	30	8	27,3	М6	19	5	19	45	6	21,8	M6	15
A3S	H 80-100 x 24 x 24	100	24	30	8	27,3	М6	19	5	24	45	8	27,3	M6	15
B1S	H 80-100 x 24 x 28	100	24	30	8	27,3	M6	19	5	28	45	8	31,3	M6	15
C1S	H 95-100 x 24 x 38	100	24	35	8	27,3	M6	20	5	38	45	10	41,3	M6	20
C2S	H 95-100 x 24 x 42	100	24	35	8	27,3	М6	20	5	42	45	12	45,3	M6	20
D1S	H 110-100 x 24 x 48	100	24	40	8	27,3	М6	22	5	48	50	14	51,8	M6	25
D2S	H 110-100 x 32 x 48	100	32	40	10	35,3	М6	22	5	48	50	14	51,8	M6	25
E1S	H 125-140 x 32 x 55	140	32	50	10	35,3	M8	30	5	55	50	16	59,3	M8	25
F1S	H 140-140 x 32 x 60	140	32	55	10	35,3	M8	13	5	60	65	18	64,4	M8	30
G1S	H 160-140 x 32 x 65	140	32	60	10	35,3	M10	13	6	65	70	18	69,4	M10	35

ПРИМЕЧАНИЕ: Версия не АТЕХ.

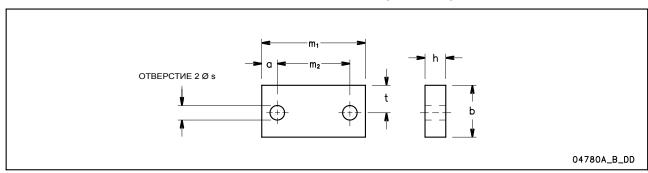

sh-giunto-elastico-con-sp-en_c_td

ГАБАРИТЫ КРУГЛЫХ ОТВЕТНЫХ ФЛАНЦЕВ С РЕЗЬБОЙ СОГЛАСНО EN 1092-1




ГАБАРИТЫ КРУГЛЫХ ПРИВАРНЫХ ОТВЕТНЫХ ФЛАНЦЕВ В СООТВЕТСТВИИ СО СТАНДАРТОМ EN 1092-1

СЕРИЯ ESHПОДСТАВКА ДЛЯ ОПОР ДВИГАТЕЛЯ



			ГАБАРИТ	НЫЕ РАЗМ	ЕРЫ (мм)			
OF	503НАЧЕН	ИЕ					ОТВЕ	РСТИЯ
b	x h	x I	а	I ₁	l ₂	С	N°	øs
35	20	125	17	100	-	12,5	2	10
40	10	155	20	100	125	15	3	10
40	12	155	20	100	125	15	3	10
40	12	180	17	140	-	20	2	14
40	20	180	17	140	-	20	2	14
40	30	155	20	100	125	15	3	10
40	40	180	17	140	-	20	2	14
50	8	226	21	140	178	24	3	14
50	20	226	21	140	178	24	3	14
50	20	304	25	210	254	25	3	14
50	30	304	25	210	254	25	3	14
100	30	467	50	311	349	59	3	22

ГАБА	РИТНЫЕ РАЗМЕ	РЫ (мм)
ОБОЗН	АЧЕНИЕ	
d ₁	x h	d_2
45	41	10
45	61	10
45	89	10
55	52	12
55	70	12
55	80	12
55	90	12
55	100	12
65	60	16
65	68	16
65	78	16
65	80	16
65	88	16

sp-mot-shs-shf-en_d_td

ПОДСТАВКА ДЛЯ ОПОР HACOCA (ESHF)

		ГА	БАРИТНЫЕ РАЗМЕРЬ	Ы (мм)		
	ОБОЗНАЧЕНИЕ					
b	x h :	x m ₁	а	m ₂	øs	t
40	10	160	25	110	14	16,5
40	20	160	25	110	14	16,5
40	25	160	25	110	14	16,5
40	30	160	25	110	14	16,5
70	20	125	15	95	14	37,5
80	10	160	20	120	18	42,5
80	25	160	20	120	18	42,5
80	30	160	20	120	18	42,5

sp-pompa-shf-en_b_td

ТЕХНИЧЕСКОЕ ПРИЛОЖЕНИЕ

NPSH

Минимальные рабочие значения, которые могут быть достигнуты на всасе насоса, должны быть ограничены во избежание начала кавитации.

Кавитация — это процесс образования пузырьков, наполненных парами жидкости, когда в определённых участках потока давление снижается до критического значения, т.е. равно или немного ниже давления насыщенных паров жидкости.

Пузырьки перемещаются вместе с потоком и после перехода в зону повышенного давления разрушаются (захлопываются) вследствие конденсации заполняющего их пара. Захлопывание пузырьков порождает ударные волны, под воздействием которых стенки оборудования деформируются и разрушаются. Данное явление сопровождается характерным "металлическим" шумом и называется начальной кавитацией.

Кавитационное разрушение может быть усилено электрохимической коррозией и локальным повышением температуры вследствие пластической деформации стенок оборудования. Наиболее стойкими к высоким температурам и коррозии материалами являются легированные и в особенности аустенитные стали. Условия, при которых возникает кавитация, могут быть определены путем расчёта действительной высоты всасывания, или кавитационного запаса на всасе (в технической литературе в связи с этим применяется термин NPSH - Net Positive Suction Head). NPSH обозначает общую энергию потока на всасе (в метрах) в условиях начинающейся кавитации за вычетом энергии, соответствующей давлению насыщенных паров перекачиваемой жидкости (в

Чтобы определить высоту hz, при которой будет обеспечена бескавитационная работа насоса, необходимо проверить следующее:

hp + hz \geq (NPSHr + 0.5) + hf + hpv \bigcirc

где:

- это абсолютное давление, действующее на свободную поверхность жидкости в резервуаре, из которого вода поступает в насос, в метрах водяного столба; hp - это отношение между барометрическим давлением и плотностью жидкости;
- высота всасывания, т.е. разность отметок оси насоса и свободной поверхности воды в резервуаре, из которого вода поступает в насос; значение hz отрицательное, когда уровень воды ниже, чем ось насоса;
- гидравлические потери во всасывающем трубопроводе и в соответствующей арматуре: отводах, обратном клапане, задвижке, коленах и т.п.;
- **hpv** давление насыщенных паров жидкости при рабочей температуре, в метрах водяного столба. hpv это отношение между давлением насыщенных паров (Pv) и плотностью (удельной массой) жидкости;
- **0,5** коэффициент запаса.

Максимально допустимая высота всасывания зависит от значения атмосферного давления (следовательно, от высоты над уровнем моря, на которой устанавливается насос) и от температуры жидкости.

В следующих таблицах, принимая за исходные точки температуру воды в 4° С и уровень моря, показаны снижение напора в зависимости от высоты над уровнем моря и потери на всасывании в зависимости от температуры.

Температура воды (°C)	20	40	60	80	90	110	120
Потери на всасе (м)	0.2	0.7	2.0	5.0	7.4	15,4	21.5

Высота над уровнем									
моря (м)	500	1000	1500	2000	2500	3000			
Потери на									
всасе (м)	0,55	1,1	1,65	2,2	2,75	3,3			

Гидравлические потери можно определить по таблицам, приведённым на стр. 131-132. Для того чтобы уменьшить их до минимума, особенно в случаях большой высоты всасывания (более 4-5 м), мы рекомендуем использовать всасывающую трубу с диаметром больше, чем диаметр всасывающего патрубка насоса.

В любом случае рекомендуется устанавливать насосы как можно ближе к точке водозабора.

Пример расчёта:

Жидкость: вода ~15°C, γ = 1 кг/дм³.

Требуемая подача: 30 м³/ч.

Требуемый напор на нагнетании: 43 м.

Высота всасывания: 3,5 м.

Выбираем насос FHE 40-200/75, у которого требуемое

значение NPSH, при 30 м³/ч, равно 2,5 м.

При температуре воды 15°C имеем:

hp = Pa /
$$\gamma$$
 = 10,33 m, hpv = Pv / γ = 0,174 m (0,01701 бар)

Потери на трение Hf во всасывающем трубопроводе при наличии приёмного обратного клапана принимаем равными ~ 1,2 м.

Заменив параметры неравенства ① вышеуказанными величинами получаем:

 $10,33 + (-3,5) \ge (2,5 + 0,5) + 1,2 + 0,17$

Отсюда следует: 6,8 > 4,4

Таким образом, неравенство удовлетворено.

ДАВЛЕНИЕ НАСЫЩЕННОГО ПАРА ТАБЛИЦА ДАВЛЕНИЯ НАСЫЩЕННОГО ПАРА (ps) И ПЛОТНОСТИ ВОДЫ (ρ)

t	T	ns		-	T	nc	2	t	Т	nc	0
°c		ps бар	ρ кг/дм³	t		ps бар	ρ кг/дм³			ps бар	ρ кг/дм³
	K			°C	K			°C	K		
1	273,15	0,00611	0,9998	55	328,15	0,15741	0,9857	120 122	393,15	1,9854	0,9429
2	274,15 275,15	0,00657	0,9999	56 57	329,15	0,16511	0,9852	124	395,15	2,1145	0,9412 0,9396
3	275,15	0,00706 0,00758	0,9999	58	330,15 331,15	0,17313 0,18147	0,9846 0,9842	124	397,15 399,15	2,2504 2,3933	0,9390
4	277,15	0,00738	1,0000	59	332,15	0,18147	0,9837	128	401,15	2,5435	0,9379
5	277,13	0,00813	1,0000	60	333,15	0,19010	0,9837	130	403,15	2,7013	0,9302
6	279,15	0,00935	1,0000	61	334,15	0,2086	0,9826	132	405,15	2,867	0,9328
7	280,15	0,01001	0,9999	62	335,15	0,2184	0,9821	134	407,15	3,041	0,9311
8	281,15	0,01072	0,9999	63	336,15	0,2286	0,9816	136	409,15	3,223	0,9294
9	282,15	0,01147	0,9998	64	337,15	0,2391	0,9811	138	411,15	3,414	0,9276
10	283,15	0,01227	0,9997	65	338,15	0,2501	0,9805	140	413,15	3,614	0,9258
11	284,15	0,01312	0,9997	66	339,15	0,2615	0,9799	145	418,15	4,155	0,9214
12	285,15	0,01401	0,9996	67	340,15	0,2733	0,9793	155	428,15	5,433	0,9121
13	286,15	0,01497	0,9994	68	341,15	0,2856	0,9788	160	433,15	6,181	0,9073
14	287,15	0,01597	0,9993	69	342,15	0,2984	0,9782	165	438,15	7,008	0,9024
15	288,15	0,01704	0,9992	70	343,15	0,3116	0,9777	170	433,15	7,920	0,8973
16	289,15	0,01817	0,9990	71	344,15	0,3253	0,9770	175	448,15	8,924	0,8921
17	290,15	0,01936	0,9988	72	345,15	0,3396	0,9765	180	453,15	10,027	0,8869
18	291,15	0,02062	0,9987	73	346,15	0,3543	0,9760	185	458,15	11,233	0,8815
19	292,15	0,02196	0,9985	74	347,15	0,3696	0,9753	190	463,15	12,551	0,8760
20	293,15	0,02337	0,9983	75	348,15	0,3855	0,9748	195	468,15	13,987	0,8704
21	294,15	0,24850	0,9981	76	349,15	0,4019	0,9741	200	473,15	15,550	0,8647
22	295,15	0,02642	0,9978	77	350,15	0,4189	0,9735	205	478,15	17,243	0,8588
23	296,15	0,02808	0,9976	78	351,15	0,4365	0,9729	210	483,15	19,077	0,8528
24 25	297,15	0,02982	0,9974	79	352,15	0,4547	0,9723	215	488,15	21,060	0,8467
26	298,15 299,15	0,03166 0,03360	0,9971	80 81	353,15 354,15	0,4736 0,4931	0,9716 0,9710	220 225	493,15 498,15	23,198 25,501	0,8403 0,8339
27	300,15	0,03564	0,9966	82	355,15	0,4931	0,9710	230	503,15	27,976	0,8339
28	301,15	0,03304	0,9963	83	356,15	0,5342	0,9697	235	508,15	30,632	0,8205
29	302,15	0,04004	0,9960	84	357,15	0,5557	0,9691	240	513,15	33,478	0,8136
30	303,15	0,04241	0,9957	85	358,15	0,5780	0,9684	245	518,15	36,523	0,8065
31	304,15	0,04491	0,9954	86	359,15	0,6011	0,9678	250	523,15	39,776	0,7992
32	305,15	0,04753	0,9951	87	360,15	0,6249	0,9671	255	528,15	43,246	0,7916
33	306,15	0,05029	0,9947	88	361,15	0,6495	0,9665	260	533,15	46,943	0,7839
34	307,15	0,05318	0,9944	89	362,15	0,6749	0,9658	265	538,15	50,877	0,7759
35	308,15	0,05622	0,9940	90	363,15	0,7011	0,9652	270	543,15	55,058	0,7678
36	309,15	0,05940	0,9937	91	364,15	0,7281	0,9644	275	548,15	59,496	0,7593
37	310,15	0,06274	0,9933	92	365,15	0,7561	0,9638	280	553,15	64,202	0,7505
38	311,15	0,06624	0,9930	93	366,15	0,7849	0,9630	285	558,15	69,186	0,7415
39	312,15	0,06991	0,9927	94	367,15	0,8146	0,9624	290	563,15	74,461	0,7321
40	313,15	0,07375	0,9923	95	368,15	0,8453	0,9616	295	568,15	80,037	0,7223
41	314,15	0,07777	0,9919	96	369,15	0,8769	0,9610	300	573,15	85,927	0,7122
42	315,15	0,08198	0,9915	97	370,15	0,9094	0,9602	305	578,15	92,144	0,7017
43	316,15	0,09639	0,9911	98	371,15	0,9430	0,9596	310	583,15	98,70	0,6906
44	317,15	0,09100	0,9907	99	372,15	0,9776	0,9586	315	588,15	105,61	0,6791
45	318,15	0,09582	0,9902	100	373,15	1,0133	0,9581	320	593,15	112,89	0,6669
46 47	319,15	0,10086	0,9898	102	375,15	1,0878	0,9567	325	598,15	120,56	0,6541
47	320,15 321,15	0,10612	0,9894	104 106	377,15 379,15	1,1668 1,2504	0,9552 0,9537	330 340	603,15 613,15	128,63 146,05	0,6404 0,6102
48	321,15	0,11162	0,9889	108	381,15	1,2304	0,9537	350	623,15	165,35	0,6102
50	323,15	0,11736	0,9880	110	383,15	1,4327	0,9507	360	633,15	186,75	0,5275
51	324,15	0,12961	0,9876	112	385,15	1,5316	0,9491	370	643,15	210,54	0,3273
52	325,15	0,12301	0,9871	114	387,15	1,6362	0,9476	374,15	647,30	221,20	0,3154
53	326,15	0,14293	0,9862	116	389,15	1,7465	0,9460	_ , ,,,,	2 ,50	,	-,5.51
54	327,15	0,15002	0,9862	118	391,15	1,8628	0,9445				
	52.715	0,.3002	0,0002		557,15	.,0020	0/3 1 13			-	t npsh a sc

G-at_npsh_a_sc

ТАБЛИЦА ГИДРАВЛИЧЕСКИХ ПОТЕРЬ НА 100 М ДЛИНЫ ПРЯМОГО ЧУГУННОГО ТРУБОПРОВОДА (ФОРМУЛА ХАЗЕНА-ВИЛЬЯМСА, C=100)

PACX	ОД								номи	ІНАЛЬ	ный .	ДИАМЕ	ЕТР в м	им и Д	ЮЙМА	X				
М ³ /Ч	л/мин			15	20	25	32	40	50	65	80	100	125	150	175	200	250	300	350	400
0.5	4.5		V	1/2" 0,94	3/4" 0,53	1" 0,34	1 1/4"	1 1/2" 0,13	2	2 1/2"	3"	4"	5"	6"	7"	8"	10"	12"	14"	16"
0,6	10		hr v	16	3,94 0,80	1,33	0,40	0,13				ія hr след пучае оці				LIV CTOR	ULIV TOUS	'		
0,9	15		hr	33,9	8,35	2,82	0,85	0,29			0,54 в с	пучае тр	уб из нер	жавеющ	ей стали			,		
1,2	20		v hr	1,89 57,7	1,06 14,21	0,68 4,79	0,41 1,44	0,27 0,49	0,17 0,16		0,47 в с.	пучае тр	уб из ПВ	Х или ПЭ)	I	I	ı		
1,5	25		v hr	2,36 87,2	1,33 21,5	0,85 7,24	0,52 2,18	0,33 0,73	0,21 0,25											
1,8	30		V	2,83	1,59	1,02	0,62	0,40	0,25											
	35	H	hr v	122 3,30	30,1 1,86	10,1 1,19	3,05 0,73	1,03 0,46	0,35											
2,1			hr v	162	40,0	13,5 1,36	4,06 0,83	1,37 0,53	0,46	0,20	-									
2,4	40		hr		51,2	17,3	5,19	1,75	0,59	0,16										
3	50		v hr		2,65 77,4	1,70 26,1	1,04 7,85	0,66 2,65	0,42 0,89	0,25 0,25										
3,6	60		v hr		3,18 108	2,04 36,6	1,24 11,0	0,80 3,71	0,51 1,25	0,30 0,35										
4,2	70		v hr		3,72 144	2,38 48,7	1,45 14,6	0,93 4,93	0,59 1,66	0,35 0,46	-									
4,8	80		٧		4,25	2,72	1,66	1,06	0,68	0,40										
		ŀ	hr v		185	62,3 3,06	18,7 1,87	6,32 1,19	2,13 0,76	0,59 0,45	0,30	1								
5,4	90	-	hr v			77,5 3,40	23,3	7,85 1,33	2,65 0,85	0,74	0,27	1								
6	100		hr			94,1	28,3	9,54	3,22	0,90	0,33									
7,5	125		v hr			4,25 142	2,59 42,8	1,66 14,4	1,06 4,86	0,63 1,36	0,41 0,49									
9	150		v hr				3,11 59,9	1,99 20,2	1,27 6,82	0,75 1,90	0,50 0,69	0,32 0,23								
10,5	175		V				3,63	2,32	1,49 9,07	0,88	0,58 0,92	0,37								
12	200		hr V				79,7 4,15	26,9 2,65	1,70	2,53 1,01	0,66	0,31	-							
			hr V				102 5,18	34,4 3,32	11,6 2,12	3,23 1,26	1,18 0,83	0,40	0,34							
15	250		hr v				154	52,0 3,98	17,5 2,55	4,89 1,51	1,78 1,00	0,60	0,20							
18	300		hr					72,8	24,6	6,85	2,49	0,84	0,28	0.20						
24	400		v hr					5,31 124	3,40 41,8	2,01 11,66	1,33 4,24	0,85 1,43	0,54 0,48	0,38 0,20						
30	500		v hr					6,63 187	4,25 63,2	2,51 17,6	1,66 6,41	1,06 2,16	0,68 0,73	0,47 0,30						
36	600		v hr						5,10 88,6	3,02 24,7	1,99 8,98	1,27 3,03	0,82 1,02	0,57 0,42	0,42 0,20					
42	700		٧						5,94	3,52	2,32	1,49	0,95	0,66	0,49					
48			hr v						118 6,79	32,8 4,02	11,9 2,65	4,03 1,70	1,36 1,09	0,56 0,75	0,26 0,55					
	800		hr v						151 7,64	42,0 4,52	15,3 2,99	5,16 1,91	1,74 1,22	0,72 0,85	0,34					
54	900		hr						188	52,3	19,0	6,41	2,16	0,89	0,42	0.52				
60	1000		v hr							5,03 63,5	3,32 23,1	2,12 7,79	1,36 2,63	0,94 1,08	0,69 0,51	0,53 0,27				
75	1250		v hr							6,28 96,0	4,15 34,9	2,65 11,8	1,70 3,97	1,18 1,63	0,87 0,77	0,66 0,40				
90	1500	ľ	v hr							7,54 134	4,98 48,9	3,18 16,5	2,04 5,57	1,42	1,04	0,80 0,56				
105	1750	h	٧							8,79	5,81	3,72	2,38	1,65	1,21	0,93				
120	2000	ŀ	hr v							179	65,1 6,63	21,9 4,25	7,40 2,72	3,05 1,89	1,44	0,75 1,06	0,68	1		
		-	hr v								83,3 8,29	28,1 5,31	9,48 3,40	3,90 2,36	1,84	0,96 1,33	0,32	1		
150	2500		hr v								126	42,5 6,37	14,3	5,89 2,83	2,78	1,45	0,49	0,71		
180	3000		hr									59,5	20,1	8,26	3,90	1,59 2,03	0,69	0,28		
210	3500		v hr									7,43 79,1	4,76 26,7	3,30 11,0	2,43 5,18	1,86 2,71	1,19 0,91	0,83 0,38		
240	4000	Ī	v hr									8,49 101	5,44 34,2	3,77 14,1	2,77 6,64	2,12 3,46	1,36 1,17	0,94 0,48		
300	5000	Ì	V										6,79	4,72	3,47	2,65	1,70	1,18		
360	6000	ŀ	hr V										51,6 8,15	21,2 5,66	10,0 4,16	5,23 3,18	1,77 2,04	0,73 1,42		
			hr v										72,3	29,8 6,61	14,1 4,85	7,33 3,72	2,47 2,38	1,02 1,65	1,21	
420	7000		hr v											39,6 7,55	18,7	9,75 4,25	3,29	1,35	0,64	
480	8000		hr											50,7	23,9	12,49	4,21	1,73	0,82	
540	9000		v hr											8,49 63,0	6,24 29,8	4,78 15,5	3,06 5,24	2,12 2,16	1,56 1,02	1,19 0,53
600	10000	ľ	v hr												6,93 36,2	5,31 18,9	3,40 6,36	2,36 2,62	1,73 1,24	1,33 0,65
L			111				l			1	1	l	<u> </u>	l	عرب د	10,5	0,30	2,02	1,24	0,00

G-at-pct_a_th

hr = гидравлические потери на 100 м длины прямого трубопровода (м) V = скорость потока воды (м/с)

ГИДРАВЛИЧЕСКИЕ ПОТЕРИ

ТАБЛИЦА ГИДРАВЛИЧЕСКИХ ПОТЕРЬ В КОЛЕНАХ, КЛАПАНАХ, ЗАДВИЖКАХ

Гидравлические потери определяются с помощью метода эквивалентной длины трубы согласно следующей таблице.

ТИП ФИТИНГА	DN											
ИЛИ АРМАТУРЫ	25	32	40	50	65	80	100	125	150	200	250	300
	Эквивалентная д						длина трубы (м)					
Колено 45°	0,2	0,2	0,4	0,4	0,6	0,6	0,9	1,1	1,5	1,9	2,4	2,8
Колено 90°	0,4	0,6	0,9	1,1	1,3	1,5	2,1	2,6	3,0	3,9	4,7	5,8
Колено 90° с большим радиусом	0,4	0,4	0,4	0,6	0,9	1,1	1,3	1,7	1,9	2,8	3,4	3,9
Т-образный тройник или крестовина	1,1	1,3	1,7	2,1	2,6	3,2	4,3	5,3	6,4	7,5	10,7	12,8
Задвижка	-	-	-	0,2	0,2	0,2	0,4	0,4	0,6	0,9	1,1	1,3
Обратный клапан	1,1	1,5	1,9	2,4	3,0	3,4	4,7	5,9	7,4	9,6	11,8	13,9

G-a-pcv_a_th

Данные таблицы действительны при коэффициенте Хазена-Вильямса C=100 (чугунные детали); для стальных деталей значения следует умножить на 1,41; для деталей из нержавеющей стали, меди и чугуна с защитным покрытием значения умножают на 1,85.

После расчета **эквивалентной длины трубы** определяются гидравлические потери по таблице потерь в трубопроводах.

Приведённые значения являются ориентировочными и могут изменяться в зависимости от модели; особенно это касается задвижек и обратных клапанов, при расчёте которых рекомендуется обращать внимание на технические данные, предоставленные производителем.

ОБЪЕМНАЯ ПОДАЧА

Литры в минуту	Кубические метры в час	Кубические футы в час	Кубические футы в минуту	Английский гал- лон в минуту	Американский галлон в минуту
л/мин	м³/ч	ft³/h	ft³/min	lmp. gal/min	Us gal./min
1,0000	0,0600	2,1189	0,0353	0,2200	0,2640
16,6667	1,0000	35,3147	0,5886	3,6660	4,4030
0,4720	0,0283	1,0000	0,0167	0,1040	0,1250
28,3170	1,6990	60,0000	1,0000	6,2290	7,4800
4,5460	0,2728	9,6326	0,1605	1,0000	1,2010
3,7850	0,2271	8,0209	0,1337	0,8330	1,0000

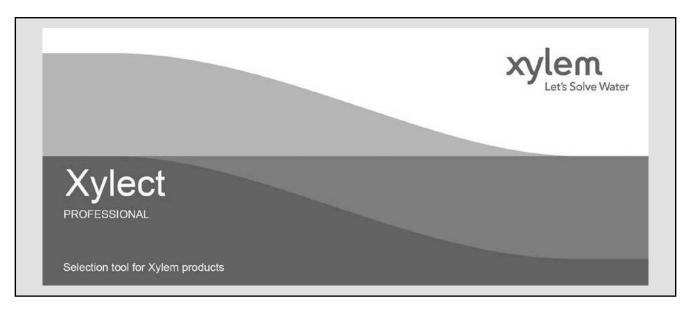
ДАВЛЕНИЕ И НАПОР

Ньютон на ква- дратный метр Н/м²	Килопаскаль кПа	Бар бар	Фунт-сила на ква- дратный дюйм psi	Метр водяного столба м Н₂О	Миллиметр ртут- ного столба мм Hg
1,0000	0,0010	1 x 10 ⁻⁵	1,45 x 10 ⁻⁴	1,02 x 10 ⁻⁴	0,0075
1000,0000	1,0000	0,0100	0,1450	0,1020	7,5000
1 x 10 ⁵	100,0000	1,0000	14,5000	10,2000	750,1000
6895,0000	6,8950	0,0690	1,0000	0,7030	51,7200
9789,0000	9,7890	0,0980	1,4200	1,0000	73,4200
133,3000	0,1333	0,0013	0,0190	0,0140	1,0000

ДЛИНА

Миллиметр	Сантиметр	Метр	Дюйм	Фут	Ярд
мм	СМ	m	in	ft	yd
1,0000	0,1000	0,0010	0,0394	0,0033	0,0011
10,0000	1,0000	0,0100	0,3937	0,0328	0,0109
1000,0000	100,0000	1,0000	39,3701	3,2808	1,0936
25,4000	2,5400	0,0254	1,0000	0,0833	0,0278
304,8000	30,4800	0,3048	12,0000	1,0000	0,3333
914,4000	91,4400	0,9144	36,0000	3,0000	1,0000

ОБЪЕМ

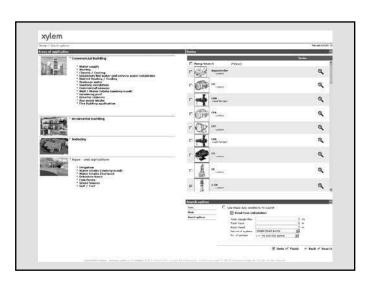

Кубический метр	Литр	Миллилитр	Английский галлон	Американский галлон	Кубический фут
M ³	л	мл	imp. gal.	US gal.	ft³
1,0000	1000,0000	1 x 10 ⁶	220,0000	264,2000	35,3147
0,0010	1,0000	1000,0000	0,2200	0,2642	0,0353
1 x 10 ⁻⁶	0,0010	1,0000	2,2 x 10 ⁻⁴	2,642 x 10 ⁻⁴	3,53 x 10 ⁻⁵
0,0045	4,5460	4546,0000	1,0000	1,2010	0,1605
0,0038	3,7850	3785,0000	0,8327	1,0000	0,1337
0,0283	28,3170	28317,0000	6,2288	7,4805	1,0000

G-at_pp_a_sc

ПРОГРАММА ПОДБОРА ОБОРУДОВАНИЯ

Xylect

Xylect – это программное обеспечение по подбору насосного оборудования, включающее в себя обширную онлайновую базу данных. Программа содержит информацию о всём ассортименте насосов Lowara, Vogel и о комплектующих изделиях, позволяет осуществлять многоаспектный поиск и предлагает ряд удобных функций по управлению проектами. Собранные в системе данные регулярно обновляются.

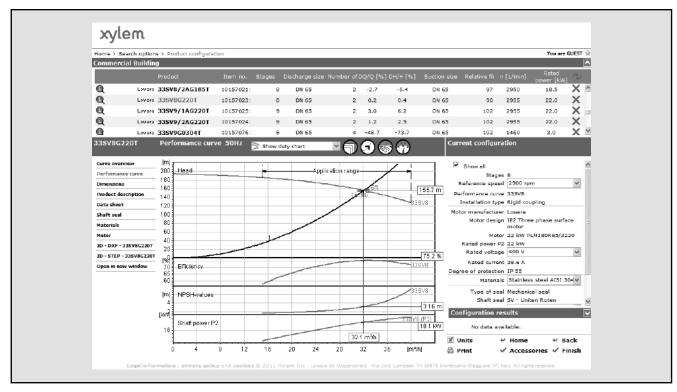

Благодаря возможности поиска по области применения и детальности выводимой на экран информации даже те, кто незнаком с оборудованием Lowara и (или) Vogel, смогут подобрать наиболее подходящий для конкретной ситуации насос.

В программе возможен поиск:

- по области применения;
- по типу изделия;
- по рабочей точке.

Xylect после обработки данных в состоянии вывести на экран:

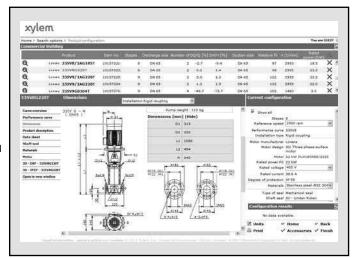
- перечень всех результатов поиска;
- диаграммы рабочих характеристик (подача, напор, мощность, КПД, NPSH);
- данные электродвигателя;
- габаритные чертежи;
- опции;
- перечень технических характеристик;
- документы и файлы в формате .dxf для скачивания.



Функция поиска по области применения помогает пользователям, не знакомым с продукцией Lowara, подобрать наиболее подходящий для конкретной ситуации насос.

ПРОГРАММА ПОДБОРА ОБОРУДОВАНИЯ

Xylect


Подробные результаты поиска дают возможность выбрать лучший из предлагаемых вариантов.

Для удобной работы с Xylect рекомендуется создать личный аккаунт, после чего становится возможным:

- выбрать желаемую единицу измерения;
- создавать и сохранять проекты;
- отправлять проекты другим пользователям Xylect.

Каждый пользователь располагает собственной страницей My Xylect, где хранятся все его проекты.

Дополнительную информацию о Xylect можно получить у дилеров или на сайте www.xylect.com.

Отображаемые на экране габаритные чертежи можно скачивать в формате .dxf

Xylem |'zīləm|

- 1) ксилема, ткань наземных растений, служащая для проведения воды от корней вверх по растению к листьям и другим органам;
- 2) международная компания, лидер в области водных технологий.

Нас 12000 человек, объединённых одной целью — разрабатывать инновационные решения по доставке воды в любые уголки земного шара. Суть нашей работы заключается в создании новых технологий, оптимизирующих использование водных ресурсов и помогающих беречь и повторно использовать воду. Мы анализируем, обрабатываем, подаём воду в жилые дома, офисы, на промышленные и сельскохозяйственные предприятия, помогая людям рационально использовать этот ценный природный ресурс. Между нами и нашими клиентами в более чем 150 странах мира установились тесные партнёрские отношения, нас ценят за способность предлагать высококачественную продукцию ведущих брендов, за эффективный сервис, за крепкие традиции новаторства.

Более подробная информация о Xylem представлена на сайте lowara.ru

ООО «КСИЛЕМ РУС»

115280, г. Москва,

ул. Ленинская Слобода, д. 19, 5 этаж, офис 21 Б1

Тел. (+7) 495 223 08 52 Факс (+7) 495 223 08 51

info.lowara.ru@xyleminc.com – www.lowara.ru

LOWARA оставляет за собой право вносить изменения без предварительного уведомления LOWARA – торговая марка компании Xylem Inc. и одно из подразделений.